In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded conse...In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.展开更多
In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis model...In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets.展开更多
Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding o...Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding of time-varying trends of network communications. This study presents a new edge sampling algorithm called edge-based multi-class blue noise (E-MCBN) to reduce visual clutter in MSV. Our main idea is inspired by the multi-class blue noise (MCBN) sampling algorithm, commonly used in multi-class scatterplot decluttering. First, we take a node pair as an edge class, which can be regarded as an analogy to classes in multi-class scatterplots. Second, we propose two indicators, namely, class overlap and inter-class conflict degrees, to measure the overlapping degree and mutual exclusion, respectively, between edge classes. These indicators help construct the foundation of migrating the MCBN sampling from multi-class scatterplots to dynamic network samplings. Finally, we propose three strategies to accelerate MCBN sampling and a partitioning strategy to preserve local high-density edges in the MSV. The result shows that our approach can effectively reduce visual clutters and improve the readability of MSV. Moreover, our approach can also overcome the disadvantages of the MCBN sampling (i.e., long-running and failure to preserve local high-density communication areas in MSV). This study is the first that introduces MCBN sampling into a dynamic network sampling.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61203147,60973095,60804013,and 61104092)the Fundamental Research Funds for the Central Universities,China(Grant Nos.JUSRP111A44,JUSRP21011,and JUSRP11233)+1 种基金the Foundation of State Key Laboratory of Digital Manufacturing Equipment and Technology,HUST,China(Grant No.DMETKF2010008)the Humanities and Social Sciences Youth Funds of the Ministry of Education,China(Grant No.12YJCZH218)
文摘In this paper we provide a unified framework for consensus tracking of leader-follower multi-agent systems with measurement noises based on sampled data with a general sampling delay. First, a stochastic bounded consensus tracking protocol based on sampled data with a general sampling delay is presented by employing the delay decomposition technique. Then, necessary and sufficient conditions are derived for guaranteeing leader-follower multi-agent systems with measurement noises and a time-varying reference state to achieve mean square bounded consensus tracking. The obtained results cover no sampling delay, a small sampling delay and a large sampling delay as three special cases. Last, simulations are provided to demonstrate the effectiveness of the theoretical results.
基金the National Natural Science Foundation of China(No.51775272,No.51005114)The Fundamental Research Funds for the Central Universities,China(No.NS2014050)。
文摘In data-driven fault diagnosis for turbo-generator sets,the fault samples are usually expensive to obtain,and inevitably with noise,which will both lead to an unsatisfying identification performance of diagnosis models.To address these issues,this paper proposes a fault diagnosis model for turbo-generator sets based on Weighted Extension Neural Network(W-ENN).WENN is a novel neural network which has three types of connection weights and an improved correlation function.The performance of the proposed model is validated against Extension Neural Network(ENN),Support Vector Machine(SVM),Relevance Vector Machine(RVM)and Extreme Learning Machine(ELM)based models.The results indicate that,on noisy small sample sets,the proposed model is superior to the other models in terms of higher identification accuracy with fewer samples and strong noise-tolerant ability.The findings of this study may serve as a powerful fault diagnosis model for turbo-generator sets on noisy small sample sets.
基金supported in part by the National Key Research and Development Program of China(2018YFB1700403)the Special Funds for the Construction of an Innovative Province of Hunan(2020GK2028)+1 种基金the National Natural Science Foundation of China(Grant Nos.61872388,62072470)the Natural Science Foundation of Hunan Province(2020JJ4758).
文摘Massive sequence view (MSV) is a classic timeline-based dynamic network visualization approach. However, it is vulnerable to visual clutter caused by overlapping edges, thereby leading to unexpected misunderstanding of time-varying trends of network communications. This study presents a new edge sampling algorithm called edge-based multi-class blue noise (E-MCBN) to reduce visual clutter in MSV. Our main idea is inspired by the multi-class blue noise (MCBN) sampling algorithm, commonly used in multi-class scatterplot decluttering. First, we take a node pair as an edge class, which can be regarded as an analogy to classes in multi-class scatterplots. Second, we propose two indicators, namely, class overlap and inter-class conflict degrees, to measure the overlapping degree and mutual exclusion, respectively, between edge classes. These indicators help construct the foundation of migrating the MCBN sampling from multi-class scatterplots to dynamic network samplings. Finally, we propose three strategies to accelerate MCBN sampling and a partitioning strategy to preserve local high-density edges in the MSV. The result shows that our approach can effectively reduce visual clutters and improve the readability of MSV. Moreover, our approach can also overcome the disadvantages of the MCBN sampling (i.e., long-running and failure to preserve local high-density communication areas in MSV). This study is the first that introduces MCBN sampling into a dynamic network sampling.