期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Probability estimation based on grey system theory for simulation evaluation 被引量:4
1
作者 Jianmin Wang Jinbo Wang +1 位作者 Tao Zhang Yunjie Wu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第4期871-877,共7页
In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the impr... In the evaluation of some simulation systems, only small samples data are gotten due to the limited conditions. In allusion to the evaluation problem of small sample data, an interval estimation approach with the improved grey confidence degree is proposed.On the basis of the definition of grey distance, three kinds of definition of the grey weight for every sample element in grey estimated value are put forward, and then the improved grey confidence degree is designed. In accordance with the new concept, the grey interval estimation for small sample data is deduced. Furthermore,the bootstrap method is applied for more accurate grey confidence interval. Through resampling of the bootstrap, numerous small samples with the corresponding confidence intervals can be obtained. Then the final confidence interval is calculated from the union of these grey confidence intervals. In the end, the simulation system evaluation using the proposed method is conducted. The simulation results show that the reasonable confidence interval is acquired, which demonstrates the feasibility and effectiveness of the proposed method. 展开更多
关键词 small sample interval estimation simulation system evaluation probability grey system theory
下载PDF
Unseen head pose prediction using dense multivariate label distribution 被引量:1
2
作者 Gao-li SANG Hu CHEN +1 位作者 Ge HUANG Qi-jun ZHAO 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2016年第6期516-526,共11页
Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previous... Accurate head poses are useful for many face-related tasks such as face recognition, gaze estimation,and emotion analysis. Most existing methods estimate head poses that are included in the training data(i.e.,previously seen head poses). To predict head poses that are not seen in the training data, some regression-based methods have been proposed. However, they focus on estimating continuous head pose angles, and thus do not systematically evaluate the performance on predicting unseen head poses. In this paper, we use a dense multivariate label distribution(MLD) to represent the pose angle of a face image. By incorporating both seen and unseen pose angles into MLD, the head pose predictor can estimate unseen head poses with an accuracy comparable to that of estimating seen head poses. On the Pointing'04 database, the mean absolute errors of results for yaw and pitch are 4.01?and 2.13?, respectively. In addition, experiments on the CAS-PEAL and CMU Multi-PIE databases show that the proposed dense MLD-based head pose estimation method can obtain the state-of-the-art performance when compared to some existing methods. 展开更多
关键词 Head pose estimation Dense multivariate label distribution sampling intervals Inconsistent labels
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部