There are two distinct types of domains,design-and cross-classes domains,with the former extensively studied under the topic of small-area estimation.In natural resource inventory,however,most classes listed in the co...There are two distinct types of domains,design-and cross-classes domains,with the former extensively studied under the topic of small-area estimation.In natural resource inventory,however,most classes listed in the condition tables of national inventory programs are characterized as cross-classes domains,such as vegetation type,productivity class,and age class.To date,challenges remain active for inventorying cross-classes domains because these domains are usually of unknown sampling frame and spatial distribution with the result that inference relies on population-level as opposed to domain-level sampling.Multiple challenges are noteworthy:(1)efficient sampling strategies are difficult to develop because of little priori information about the target domain;(2)domain inference relies on a sample designed for the population,so within-domain sample sizes could be too small to support a precise estimation;and(3)increasing sample size for the population does not ensure an increase to the domain,so actual sample size for a target domain remains highly uncertain,particularly for small domains.In this paper,we introduce a design-based generalized systematic adaptive cluster sampling(GSACS)for inventorying cross-classes domains.Design-unbiased Hansen-Hurwitz and Horvitz-Thompson estimators are derived for domain totals and compared within GSACS and with systematic sampling(SYS).Comprehensive Monte Carlo simulations show that(1)GSACS Hansen-Hurwitz and Horvitz-Thompson estimators are unbiased and equally efficient,whereas thelatter outperforms the former for supporting a sample of size one;(2)SYS is a special case of GSACS while the latter outperforms the former in terms of increased efficiency and reduced intensity;(3)GSACS Horvitz-Thompson variance estimator is design-unbiased for a single SYS sample;and(4)rules-ofthumb summarized with respect to sampling design and spatial effect improve precision.Because inventorying a mini domain is analogous to inventorying a rare variable,alternative network sampling procedures are also readily available for inventorying cross-classes domains.展开更多
This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube s...This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.展开更多
Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new meth...Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.展开更多
A high linearity,undersampling 14-bit 357 kSps cyclic analog-to-digital convert(ADC) is designed for a radio frequency identification transceiver system.The passive capacitor error-average(PCEA) technique is adopt...A high linearity,undersampling 14-bit 357 kSps cyclic analog-to-digital convert(ADC) is designed for a radio frequency identification transceiver system.The passive capacitor error-average(PCEA) technique is adopted for high accuracy.An improved PCEA sampling network,capable of eliminating the crosstalk path of two pipelined stages,is employed.Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area.An additional digital calibration block is added to compensate for the error due to defective layout design.The presented ADC is fabricated in a 180 nm CMOS process,occupying 0.65×1.6 mm^2. The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range(SFDR), and the peak SFDR is as high as 106.4 dB with 2.431 MHz input.展开更多
基金supported by the Fundamental Research Funds for the Central Universities (Grant No. 2021ZY04)the National Natural Science Foundation of China (Grant No. 32001252)the International Center for Bamboo and Rattan (Grant No. 1632020029)
文摘There are two distinct types of domains,design-and cross-classes domains,with the former extensively studied under the topic of small-area estimation.In natural resource inventory,however,most classes listed in the condition tables of national inventory programs are characterized as cross-classes domains,such as vegetation type,productivity class,and age class.To date,challenges remain active for inventorying cross-classes domains because these domains are usually of unknown sampling frame and spatial distribution with the result that inference relies on population-level as opposed to domain-level sampling.Multiple challenges are noteworthy:(1)efficient sampling strategies are difficult to develop because of little priori information about the target domain;(2)domain inference relies on a sample designed for the population,so within-domain sample sizes could be too small to support a precise estimation;and(3)increasing sample size for the population does not ensure an increase to the domain,so actual sample size for a target domain remains highly uncertain,particularly for small domains.In this paper,we introduce a design-based generalized systematic adaptive cluster sampling(GSACS)for inventorying cross-classes domains.Design-unbiased Hansen-Hurwitz and Horvitz-Thompson estimators are derived for domain totals and compared within GSACS and with systematic sampling(SYS).Comprehensive Monte Carlo simulations show that(1)GSACS Hansen-Hurwitz and Horvitz-Thompson estimators are unbiased and equally efficient,whereas thelatter outperforms the former for supporting a sample of size one;(2)SYS is a special case of GSACS while the latter outperforms the former in terms of increased efficiency and reduced intensity;(3)GSACS Horvitz-Thompson variance estimator is design-unbiased for a single SYS sample;and(4)rules-ofthumb summarized with respect to sampling design and spatial effect improve precision.Because inventorying a mini domain is analogous to inventorying a rare variable,alternative network sampling procedures are also readily available for inventorying cross-classes domains.
基金financially supported by the National Natural Science Foundation of China(Grant No.51278217)
文摘This paper presents an artificial neural network(ANN)-based response surface method that can be used to predict the failure probability of c-φslopes with spatially variable soil.In this method,the Latin hypercube sampling technique is adopted to generate input datasets for establishing an ANN model;the random finite element method is then utilized to calculate the corresponding output datasets considering the spatial variability of soil properties;and finally,an ANN model is trained to construct the response surface of failure probability and obtain an approximate function that incorporates the relevant variables.The results of the illustrated example indicate that the proposed method provides credible and accurate estimations of failure probability.As a result,the obtained approximate function can be used as an alternative to the specific analysis process in c-φslope reliability analyses.
基金Supported by the Ministerial Level Research Foundation(404040401)
文摘Training neural network to recognize targets needs a lot of samples.People usually get these samples in a non-systematic way,which can miss or overemphasize some target information.To improve this situation,a new method based on virtual model and invariant moments was proposed to generate training samples.The method was composed of the following steps:use computer and simulation software to build target object's virtual model and then simulate the environment,light condition,camera parameter,etc.;rotate the model by spin and nutation of inclination to get the image sequence by virtual camera;preprocess each image and transfer them into binary image;calculate the invariant moments for each image and get a vectors' sequence.The vectors' sequence which was proved to be complete became the training samples together with the target outputs.The simulated results showed that the proposed method could be used to recognize the real targets and improve the accuracy of target recognition effectively when the sampling interval was short enough and the circumstance simulation was close enough.
基金supported by the National High Technology Research and Development Program of China(No.2006AA04A109)
文摘A high linearity,undersampling 14-bit 357 kSps cyclic analog-to-digital convert(ADC) is designed for a radio frequency identification transceiver system.The passive capacitor error-average(PCEA) technique is adopted for high accuracy.An improved PCEA sampling network,capable of eliminating the crosstalk path of two pipelined stages,is employed.Opamp sharing and the removal of the front-end sample and hold amplifier are utilized for low power dissipation and small chip area.An additional digital calibration block is added to compensate for the error due to defective layout design.The presented ADC is fabricated in a 180 nm CMOS process,occupying 0.65×1.6 mm^2. The input of the undersampling ADC achieves 15.5 MHz with more than 90 dB spurious free dynamic range(SFDR), and the peak SFDR is as high as 106.4 dB with 2.431 MHz input.