The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture ...The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.展开更多
The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and cos...The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.展开更多
A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal...A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal areas.The aim of this research was to study the characteristics and processes of liquefied sediment strata in terms of wave-induced liquefaction.In the experiment,the bottom bed liquefied under the wave action and the liquefied soil moved in the same period with the overlying waves,and the track of the soil particles in the liquefied soil was an ellipse.The sand layer consisting of coarse particles in the upper part,settled into the lower silt layer.The sinking of coarse particles and upward migration of the fine particles of the lower layer induced by liquefied sediment fluctuations are the likely reasons for sedimentation of the sand layer in liquefied silt.展开更多
Sand production is a crucial problem during the process of extracting natural gas from hydrate reservoirs. To deal with sand-production problems systematically, a sand-production control system (SCS) is first proposed...Sand production is a crucial problem during the process of extracting natural gas from hydrate reservoirs. To deal with sand-production problems systematically, a sand-production control system (SCS) is first proposed in this paper, specialized for pore-distributed clayey silt hydrate reservoirs. Secondly, a nodal system analysis method (NSAM) is applied to analyze the sand migration process during hydrate exploitation. The SCS is divided into three sub-systems, according to different sand migration mechanisms, and three key scientific problems and advances in SCS research in China Geological Survey are reviewed and analyzed. The maximum formation sanding rate, proper sand-control gravel size, and borehole blockage risk position were provided for clayey hydrate exploitation wells based on the SCS analysis. The SCS sub-systems are closely connected via bilateral coupling, and coordination of the subsystems is the basis of maintaining formation stability and prolonging the gas production cycle. Therefore, contradictory mitigation measures between sand production and operational systems should be considered preferentially. Some novel and efficient hydrate exploitation methods are needed to completely solve the contradictions caused by sand production.展开更多
Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the norm...Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.展开更多
The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carrie...The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.展开更多
In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical co...In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases.展开更多
In this paper, the effect of waves on erosion of the sandy bottom before mound breakwaters is studied. The sandy bottom basically presents two erosion patterns, between which there is a transitional state, under the a...In this paper, the effect of waves on erosion of the sandy bottom before mound breakwaters is studied. The sandy bottom basically presents two erosion patterns, between which there is a transitional state, under the action of partially standing waves. The two erosion patterns can be determined by dimensionless parameter Us, defined in this paper. The erosion locations, depths and lengths can be estimated by a series of equations presented in the text. Irregular waves are employed in the test besides regular waves, and the effect of the irregular waves can be estimated by the element of equivalent waves, such as T1/3, H1/3.展开更多
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p...The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.展开更多
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t...For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.展开更多
Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent ...Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.展开更多
In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of ...In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.展开更多
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ...Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.展开更多
The dry-separation method is an alternative to the wet-preparation in the current European Standard for the determination of particle size distributions by the sieving of soils. Due to the risk of error, dry-separatio...The dry-separation method is an alternative to the wet-preparation in the current European Standard for the determination of particle size distributions by the sieving of soils. Due to the risk of error, dry-separation is cautioned against in the standard;however, there is no additional guidance as to when it is unsuitable nor for the magnitude of error that it may introduce. This study investigates the dry-separation method as an alternative by comparing with the conventional method of Wet-preparation in terms of particle-size distributions of eight cohesionless sand-gravel soils with varying amounts of nonplastic fines. The findings indicate a gradually increasing sieving error for fractions at minus 0.5 mm with the amount of fines in the soil, and depending on the fines content of the soil, dry-separation introduced errors upwards of 45% in silt-sand-gravel soils. An empirical best-fit formula is proposed for the estimation of the error using the dry-preparation method on this type of soil. Furthermore, to avoid sieving errors, the results suggest that the dry-separation method should not be used for silt-sand-gravel soils exceeding 2% silt size fractions.展开更多
The objective of this study is to determine the influence of the surrounding soils on the granular properties of the silty sands of Togo and on the resistance of the mortars. Sand compositions are made by substituting...The objective of this study is to determine the influence of the surrounding soils on the granular properties of the silty sands of Togo and on the resistance of the mortars. Sand compositions are made by substituting silty sands with clay soil, vegetal soil, lateritic soil or fine elements (<0.08 mm) which are the surrounding land polluting the sands in Togo. After identification tests, the mixtures were used to prepare test specimens of mortar which are subjected to bending and compression. It appears that additions of clay and plastic soils (ES = 0, VBM > 0.53 and IP > 19) from 10% to 35% cause drops in resistance of mortars from 7% to 96%;this loss is 8% to 70% for the rates of addition of less clayey soil (ES = 33, VBM = 0.40 and IP = 0) at rates of 10% to 100%. As for fine powdery soils (ES = 56.53 and VBM = 0.25), they have virtually no influence on resistance (loss of less than 3% for rates of 100%). Construction stakeholders thus have a decision-making tool for the choice of silty sand extraction zones according to the surrounding land and the quality of the desired concrete.展开更多
To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep character...To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.展开更多
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot...The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.展开更多
Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the ...Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the migration,settlement,and blockage processes of sand particles in the radial well.The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium,based on the diameter ratio of sand control medium to sand particle(D_(d)):fully passing(D_(d)=8.75-22.5),partially passing and partially blocked(D_(d)=3.18-5.63),and completely blocked(D_(d)=2.18-3.21).After being captured by the sand control medium,sand particles can block pores,which increases fluid flow resistance and causes a certain pressure difference in the radial well.The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design,for the purpose of promoting hydrate decomposition,and sand capture.The length of the radial well should be optimized based on the reservoir pore pressure,production pressure difference,bottom hole pressure,and the pressure gradient in the radial well.It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured.Even the permeability is reduced to several hundred millidarcy,it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition.Increasing fluid velocity reduces the blocking capacity of the sand control medium,mainly because of deterioration in bridging between sand particles.展开更多
The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experime...The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experiments under various vertical loads(four levels),self-designed acoustic macro experiments,and a series of formula revisions to the macro-air-bearing silt sound-velocity prediction model,this paper discusses the macro-and micro-scale features of gassy silts from the Yellow River Delta.The samples consisted of different proportions of silt from the Yellow River Delta and porous media,and they were used to form two types of aerosol silts with initial gas contents of 4.23%and 7.67%.The results show that the air bubble content and external load considerably affect the microstructural parameters and acoustic behavior of gassy silt in the Yellow River Delta.The macroscopic sound velocity showed a linear positive correlation with vertical load and relation to microstructural parameters in varying manners and degrees.Based on the traditional Biot-Stoll acoustic model,the gas-phase medium coefficient was introduced for the proper calculation and prediction of the sound velocity of air-bearing silt.The errors of the overall prediction varied between 5.6%and 9.6%.展开更多
文摘The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.
基金supported by the National Natural Science Foundation of China (No.51379142 and No.51679163)Innovation Method Fund of China (No.2016IM030100)the Tianjin Municipal Natural Science Foundation (No.17JCYBJC22000)
文摘The wide-shallow composite bucket foundation(WSCBF) is a new type of offshore wind power foundation that can be built on land and rapidly installed offshore, there by effectively reducing the construction time and costs of offshore wind power foundation. In this study, the horizontal bearing capacity is calculated by finite element simulation and compared with test results to verify the validity of results. In this process, the vertical load and bending load are respectively calculated by the finite element simulation. Under the vertical load effect, the bucket foundation and the soil inside are regarded as a whole, and the corresponding buckling failure mode is obtained. The ultimate vertical bearing capacity is calculated using empirical and theoretical formulas; the theoretical formula is also revised by finite element results. Under bending load, the rotational center of the composite bucket foundation(in a region close to the bucket bottom) gradually moves from the left of the central axis(reverse to loading direction) to the nearby compartment boards along the loading direction. The H–M envelope line shows a linear relationship, and it is determined that the vertical and bending ultimate bearing capacities can be improved by an appropriate vertical load.
基金The funding for this project was provided by the National Natural Science Foundation of China(No.41976049)the Fundamental Research Funds for the Central Universities(No.202061028).
文摘A flume experiment was conducted to investigate the restratification of liquefied sediment strata under a wave load with the focus on the interbedded strata of coarse and fine sediments formed in estuarine and coastal areas.The aim of this research was to study the characteristics and processes of liquefied sediment strata in terms of wave-induced liquefaction.In the experiment,the bottom bed liquefied under the wave action and the liquefied soil moved in the same period with the overlying waves,and the track of the soil particles in the liquefied soil was an ellipse.The sand layer consisting of coarse particles in the upper part,settled into the lower silt layer.The sinking of coarse particles and upward migration of the fine particles of the lower layer induced by liquefied sediment fluctuations are the likely reasons for sedimentation of the sand layer in liquefied silt.
基金supported by the National Natural Science Foundation of China (41606078)National Key Research and Development Plan (2017YFC0307600)+1 种基金Qingdao National Laboratory for Marine Science and Technology (QNLM2016ORP0207,QNLM2016ORP0203)Marine Geological Survey Program (DD20190231,DD20190221).
文摘Sand production is a crucial problem during the process of extracting natural gas from hydrate reservoirs. To deal with sand-production problems systematically, a sand-production control system (SCS) is first proposed in this paper, specialized for pore-distributed clayey silt hydrate reservoirs. Secondly, a nodal system analysis method (NSAM) is applied to analyze the sand migration process during hydrate exploitation. The SCS is divided into three sub-systems, according to different sand migration mechanisms, and three key scientific problems and advances in SCS research in China Geological Survey are reviewed and analyzed. The maximum formation sanding rate, proper sand-control gravel size, and borehole blockage risk position were provided for clayey hydrate exploitation wells based on the SCS analysis. The SCS sub-systems are closely connected via bilateral coupling, and coordination of the subsystems is the basis of maintaining formation stability and prolonging the gas production cycle. Therefore, contradictory mitigation measures between sand production and operational systems should be considered preferentially. Some novel and efficient hydrate exploitation methods are needed to completely solve the contradictions caused by sand production.
基金funded by the National Key Basic Research Development Plan of China (Grant No. 2012CB026104)the National Natural Science Foundation (NSFC) of China (Grant Nos.51208320 and 51171281)
文摘Under repeated freezing and thawing in deep seasonal frozen regions, the stability and strength of the soil are imposed in the form of large uneven settlement, instability and strength reduction, which affect the normal operation of railway lines. This study is to obtain the influencing rules of freeze-thaw on the dynamic properties (dynamic strain, confining pressure and compactness) of silty sand. Based on an amount of inner tests, the dynamic modulus and damping ratio properties of silty soil subjected to repeated freeze-thaw cycles were deeply researched and analyzed. The results are as follows: At the same dynamic strain, the relationship of dynamic stress and freeze-thaw cycles presents negative cor- relation, and the relationship of dynamic stress, confining pressure and compactness present positive correlation. The dynamic modulus double decreases while the damping ratio double increases with incremental increase in dynamic strain. The dynamic modulus sharply decreases while the damping ratio increases with incremental increase in freeze-thaw cycles, and then the changes level off after six freeze-thaw cycles. The dynamic modulus increases while the damping ratio decreases as the confining pressure and compactness increase at the same strain level.
基金financed by the National Natural Science Foundation of China(41301345,41101284)。
文摘The soil type is a key factor influencing N(nitrogen)cycling in soil;however,gross N transformations and N_(2)O emission sources are still poorly understood.In this study,a laboratory 15N tracing experiment was carried out at 60%WHC(water holding capacity)and 25℃to evaluate the gross N transformation rates and N_(2)O emission pathways in sandy loam and silt loam soils in a semi-arid region of Heilongjiang Province,China.The results showed that the gross rates of N mineralization,immobilization,and nitrification were 3.60,1.90,and 5.63 mg N/(kg·d)in silt loam soil,respectively,which were 3.62,4.26,and 3.13 times those in sandy loam soil,respectively.The ratios of the gross nitrification rate to the ammonium immobilization rate(n/ia)in sandy loam soil and silt loam soil were all higher than 1.00,whereas the n/ia in sandy loam soil(4.36)was significantly higher than that in silt loam soil(3.08).This result indicated that the ability of sandy loam soil to release and conserve the available N was relatively poor in comparison with silt loam soil,and the relatively strong nitrification rate compared to the immobilization rate may lead to N loss through NO_(3)–leaching.Under aerobic conditions,both nitrification and denitrification made contributions to N_(2)O emissions.Nitrification was the dominant pathway leading to N_(2)O production in soils and was responsible for 82.0%of the total emitted N_(2)O in sandy loam soil,which was significantly higher than that in silt loam soil(71.7%).However,the average contribution of denitrification to total N_(2)O production in sandy loam soil was 17.9%,which was significantly lower than that in silt loam soil(28.3%).These results are valuable for developing reasonable fertilization management and proposing effective greenhouse gas mitigation strategies in different soil types in semiarid regions.
基金supported the National Natural Science Foundation of China (No.41971076)the National Key Research and Development Program of China (No.2016YFE0202400)the State Key Laboratory of Road Engineering Safety and Health in Cold and High-altitude Regions (No.YGY2017KYPT-04)。
文摘In cold regions,the creep characteristics of warm frozen silty sand have significant effect on the stability of slope and subgrade.To investigate the creep behavior of warm frozen silty sand under thermo-mechanical coupling loads,a series of triaxial creep tests were carried out under different temperatures and stresses.The test results reveal that the creep strains decrease as the consolidation stress increases,and finally tend to be equal under the same loading stress,regardless of whether the stress is isotropic or deviatoric.Additionally,warm frozen silty sand is highly sensitive to temperature,which greatly influences the creep strain both in the consolidation stage and loading stage.Furthermore,based on the creep test phenomena,a new creep model that considers the influence of the stress level,temperature,hardening,and damage effect was established and experimentally validated.Finally,the sensitivity of the model parameters was analyzed,and it was found that the creep curve transitions from the attenuation creep stage to the non-attenuation creep stage as the temperature coefficient and stress coefficient increases.The hardening effect gradually changes to the damage effect as the coupling coefficient of the hardening and damage increases.
文摘In this paper, the effect of waves on erosion of the sandy bottom before mound breakwaters is studied. The sandy bottom basically presents two erosion patterns, between which there is a transitional state, under the action of partially standing waves. The two erosion patterns can be determined by dimensionless parameter Us, defined in this paper. The erosion locations, depths and lengths can be estimated by a series of equations presented in the text. Irregular waves are employed in the test besides regular waves, and the effect of the irregular waves can be estimated by the element of equivalent waves, such as T1/3, H1/3.
基金financially supported by the National Key Research and Development Program of China(2022YFB3706800,2020YFB1710100)the National Natural Science Foundation of China(51821001,52090042,52074183)。
文摘The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%.
基金financially supported by the Natural Science Foundation of Gansu Province,China(22JR5RA050,20JR10RA231)the fellowship of the China Postdoctoral Science Foundation(2021M703466)the Basic Research Innovation Group Project of Gansu Province,China(21JR7RA347).
文摘For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area.
文摘Fine grain soils have a complex engineering behaviour which depends but not limited to moisture content, changes in external pressure and characteristics of the pore medium. Sand often contains a considerable percent of silt which is expected to alter its natural behaviour. This composite matrix is referred to as silty-sand. To understand the behaviour of this matrix under varying moisture conditions, some of the factors influencing the soil-water characteristics of unsaturated silty sands were investigated. Representative samples were collected from a river bank after its index properties were predetermined in the laboratory. The samples were compacted at different moisture conditions and compactive efforts. With the pressure plate extractor device, the Soil-Water Characteristic (SWC) was obtained and SWC Curves plotted. Compaction at greater compactive effort (modified proctor) and optimum moisture content produced the largest air entry value and reduced air voids. The air entry values of the soils obtained ranged from 21 kPa to 57 kPa. Also changes in the shape of the SWCC were consistent with changes in pore size which occur by varying compaction conditions. Result shows that soil structure, compaction water content, compactive effort and percentage of fine particles are factors affecting the Soil-Water Characteristics.
文摘In this study, a backpropagation neural network algorithm was developed in order to predict the liquefaction cyclic resistance ratio (CRR) of sand-silt mixtures. A database, consisting of sufficient published data of laboratory cyclic triaxial, torsional shear and simple shear tests results, was collected and utilized in the ANN model. Several ANN models were developed with different sets of input parameters in order to determine the model with best performance and preciseness. It has been illustrated that the proposed ANN model can predict the measured CRR of the different data set which was not incorporated in the developing phase of the model with the good degree of accuracy. The subsequent sensitivity analysis was performed to compare the effect of each parameter in the model with the laboratory test results. At the end, the participation or relative importance of each parameter in the ANN model was obtained.
基金financially supported by the Chang Jiang Scholar and Innovation Team Development Plan of China (IRT_15R29)the Basic Research Innovation Group Project of Gansu Province, China (21JR7RA347)the Natural Science Foundation of Gansu Province, China (20JR10RA231)。
文摘Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering.
文摘The dry-separation method is an alternative to the wet-preparation in the current European Standard for the determination of particle size distributions by the sieving of soils. Due to the risk of error, dry-separation is cautioned against in the standard;however, there is no additional guidance as to when it is unsuitable nor for the magnitude of error that it may introduce. This study investigates the dry-separation method as an alternative by comparing with the conventional method of Wet-preparation in terms of particle-size distributions of eight cohesionless sand-gravel soils with varying amounts of nonplastic fines. The findings indicate a gradually increasing sieving error for fractions at minus 0.5 mm with the amount of fines in the soil, and depending on the fines content of the soil, dry-separation introduced errors upwards of 45% in silt-sand-gravel soils. An empirical best-fit formula is proposed for the estimation of the error using the dry-preparation method on this type of soil. Furthermore, to avoid sieving errors, the results suggest that the dry-separation method should not be used for silt-sand-gravel soils exceeding 2% silt size fractions.
文摘The objective of this study is to determine the influence of the surrounding soils on the granular properties of the silty sands of Togo and on the resistance of the mortars. Sand compositions are made by substituting silty sands with clay soil, vegetal soil, lateritic soil or fine elements (<0.08 mm) which are the surrounding land polluting the sands in Togo. After identification tests, the mixtures were used to prepare test specimens of mortar which are subjected to bending and compression. It appears that additions of clay and plastic soils (ES = 0, VBM > 0.53 and IP > 19) from 10% to 35% cause drops in resistance of mortars from 7% to 96%;this loss is 8% to 70% for the rates of addition of less clayey soil (ES = 33, VBM = 0.40 and IP = 0) at rates of 10% to 100%. As for fine powdery soils (ES = 56.53 and VBM = 0.25), they have virtually no influence on resistance (loss of less than 3% for rates of 100%). Construction stakeholders thus have a decision-making tool for the choice of silty sand extraction zones according to the surrounding land and the quality of the desired concrete.
基金financial support from the National Natural Science Foundation of China(41902272)Gansu Province Basic Research Innovation Group Project(21JR7RA347).
文摘To ensure the long-term safety and stability of bridge pile foundations in permafrost regions,it is necessary to investigate the rheological effects on the pile tip and pile side bearing capacities.The creep characteristics of the pile-frozen soil interface are critical for determining the long-term stability of permafrost pile foundations.This study utilized a self-developed large stress-controlled shear apparatus to investigate the shear creep characteristics of the frozen silt-concrete interface,and examined the influence of freezing temperatures(−1,−2,and−5°C),contact surface roughness(0,0.60,0.75,and 1.15 mm),normal stress(50,100,and 150 kPa),and shear stress on the creep characteristics of the contact surface.By incorporating the contact surface’s creep behavior and development trends,we established a creep constitutive model for the frozen silt-concrete interface based on the Nishihara model,introducing nonlinear elements and a damage factor.The results revealed significant creep effects on the frozen silt-concrete interface under constant load,with creep displacement at approximately 2-15 times the instantaneous displacement and a failure creep displacement ranging from 6 to 8 mm.Under different experimental conditions,the creep characteristics of the frozen silt-concrete interface varied.A larger roughness,lower freezing temperatures,and higher normal stresses resulted in a longer sample attenuation creep time,a lower steady-state creep rate,higher long-term creep strength,and stronger creep stability.Building upon the Nishihara model,we considered the influence of shear stress and time on the viscoelastic viscosity coefficient and introduced a damage factor to the viscoplasticity.The improved model effectively described the entire creep process of the frozen silt-concrete interface.The results provide theoretical support for the interaction between pile and soil in permafrost regions.
基金financially supported by the National Natural Science Foundation of China (42461011, 42071014)the Fellowship of the China Postdoctoral Science Foundation (2021M703466)
文摘The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions.
基金sponsored by National Natural Science Foundation of China (Grand No.52204024,52074332)CNPC Innovation Found (Grant No.2021DQ02-1006)Fundamental Research Funds for the Central Universities (No.2-9-2023-049)。
文摘Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the migration,settlement,and blockage processes of sand particles in the radial well.The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium,based on the diameter ratio of sand control medium to sand particle(D_(d)):fully passing(D_(d)=8.75-22.5),partially passing and partially blocked(D_(d)=3.18-5.63),and completely blocked(D_(d)=2.18-3.21).After being captured by the sand control medium,sand particles can block pores,which increases fluid flow resistance and causes a certain pressure difference in the radial well.The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design,for the purpose of promoting hydrate decomposition,and sand capture.The length of the radial well should be optimized based on the reservoir pore pressure,production pressure difference,bottom hole pressure,and the pressure gradient in the radial well.It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured.Even the permeability is reduced to several hundred millidarcy,it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition.Increasing fluid velocity reduces the blocking capacity of the sand control medium,mainly because of deterioration in bridging between sand particles.
基金supported by the National Natural Science Foundation of China(No.U2006213)the China Post doctoral Science Foundation(No.2022M712989).
文摘The morphological changes in isolated bubbles in gassy silt play a critical role in the microscopic structures between soil particles and bubbles and macroscopic physical properties.Based on X-ray CT scanning experiments under various vertical loads(four levels),self-designed acoustic macro experiments,and a series of formula revisions to the macro-air-bearing silt sound-velocity prediction model,this paper discusses the macro-and micro-scale features of gassy silts from the Yellow River Delta.The samples consisted of different proportions of silt from the Yellow River Delta and porous media,and they were used to form two types of aerosol silts with initial gas contents of 4.23%and 7.67%.The results show that the air bubble content and external load considerably affect the microstructural parameters and acoustic behavior of gassy silt in the Yellow River Delta.The macroscopic sound velocity showed a linear positive correlation with vertical load and relation to microstructural parameters in varying manners and degrees.Based on the traditional Biot-Stoll acoustic model,the gas-phase medium coefficient was introduced for the proper calculation and prediction of the sound velocity of air-bearing silt.The errors of the overall prediction varied between 5.6%and 9.6%.