The service life and properties of Carbon fiber reinforced polycarbonate (CF/PC) composites are seriously affected by ultraviolet radiation from outdoor exposure during aging. In this work, the changes of structure an...The service life and properties of Carbon fiber reinforced polycarbonate (CF/PC) composites are seriously affected by ultraviolet radiation from outdoor exposure during aging. In this work, the changes of structure and solid particle erosion resistance for CF/PC composites after ultraviolet irradiation were studied. It was shown that ultraviolet irradiation causes photo-oxygen aging and photo-fries re-arrangement of the composite, and the result was confirmed by FTIR. We correlated the solid particle erosion resistance with aging time, and found that the solid particle erosion resistance of CF/PC composites greatly decreased by UVB irradiation during 15 hours. Furthermore, the eroded material surface was analyzed using scanning electron microscope (SEM). It suggests that ultraviolet aging leads to plasticization and degradation, resulting in reduction of erosion resistance of the composite.展开更多
In studying sand beach erosion and protection tactics in Liaoning Province, the authors calculated the wavedata of 27 a Period (1963-1991) at Bayuquan Observation Station in Liaodong Gulf. Together with the beach leve...In studying sand beach erosion and protection tactics in Liaoning Province, the authors calculated the wavedata of 27 a Period (1963-1991) at Bayuquan Observation Station in Liaodong Gulf. Together with the beach levellingsand some simple marking stakes monitoring and by having the aid of local annals, the paper analysed the present situationsof the coastline and the causes of sand coastal recession and serious consequences, and then discussed the dynamic processof alongshore sand transport. Simultaneously, based on alongshore sand transport model, oneline cut-and-fill theory anddynamical water model(sea level rise), the authors preliminary estimated beach process for the future in the area.Recently, the coastline is being eroded and 2/3 of the sand coast is subjected to erosion, which the recession rate ofthe individual sector exceed 7. 0 m/a. Coastal erosion has threatened villages, roads, factories and tourist resources. Sealevel rises and the decreasing amount of materials by rivers discharged into the sea and the activities of man, made coast line recession rate accelerate, and cause a great loss of land in the area.展开更多
A performance test was conducted in a wind tunnel by changing the principal configuration parameters of a sampler such as the diameter of the container, inlet width and cone height. The results show that the average s...A performance test was conducted in a wind tunnel by changing the principal configuration parameters of a sampler such as the diameter of the container, inlet width and cone height. The results show that the average sand collection rate is from 80% to 90% when any one of the configuration parameter levels is changed. However, the variation of a parameter level results in different ef-fects on the sand collection rate for each soil sample within a certain size range of sand grains. The results show that for various sand grain sized soil sample at each wind speed, the sand collection rate decreases when the diameter of the container changes from 50 mm to 40 mm, the sand collection rate increases by about 2%-3% when the inlet width changes from 10 mm to 8 mm, and the sand collection rate increases by about 3%-4% when cone height is altered from 100 mm to 125 mm. The average sand collection rate is enhanced by 2%-4% for the soil sample of different sized sand grains when the diameter of the container is 50 mm, the inlet width is 8 mm, and cone height is 125 mm.展开更多
Sand erosion is a phenomenon where solid particles impinging to a wall cause serious mechanical damages to the wall surface. This phenomenon is a typical gas-particle two-phase turbulent flow and a multi-physics probl...Sand erosion is a phenomenon where solid particles impinging to a wall cause serious mechanical damages to the wall surface. This phenomenon is a typical gas-particle two-phase turbulent flow and a multi-physics problem where the flow field, particle trajectory and wall deformation interact with each other. On the other hand, aircraft engines operating in a particulate environment are subjected to the performance and lifetime deterioration due to sand erosion. Especially, the compressor of the aircraft engines is severely damaged. The flow fields of the compressor have strongly three dimensional and unsteady natures. In order to estimate the deterioration due to sand erosion, the sand erosion simulation for a compressor is required under the consideration of the rotor-stator interaction. In the present study, we apply our three dimensional sand erosion prediction code to a single stage axial flow compressor. We numerically investigate the change of the flow field, the particle trajectories, and the eroded wall shape in the compressor, to clarify the effects of sand erosion in the compressor.展开更多
The internal erosion of pipelines in oil and gas storage and transportation engineering is highly risky.High gas velocity of annular flow entrained sand will cause damage to the pipelines,and may further result in thi...The internal erosion of pipelines in oil and gas storage and transportation engineering is highly risky.High gas velocity of annular flow entrained sand will cause damage to the pipelines,and may further result in thinning of the wall.If this damage lasts for a long time,it may cause pipeline leakage and cause huge economic losses and environmental problems.In this research,an experimental device for studying multiphase flow erosion is designed,including an erosion loop and an experimental elbow that can test the erosion rate.The annular flow state and pipe wall erosion morphology can also be tested by the device.The computational fluid dynamics(CFD)method is combined with the experiment to further study the annular flow erosion mechanism in the pipeline.The relationship between gas-liquid-solid distribution and erosion profile was studied.The results show that the most eroded region occurs be-tween 22.5° and 45° in the axial angle direction and between 90° and 135° in the circumferential angle direction of the elbow.The pits and deep scratches form on the surface of the sample after the sand collision.展开更多
Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-s...Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.展开更多
文摘The service life and properties of Carbon fiber reinforced polycarbonate (CF/PC) composites are seriously affected by ultraviolet radiation from outdoor exposure during aging. In this work, the changes of structure and solid particle erosion resistance for CF/PC composites after ultraviolet irradiation were studied. It was shown that ultraviolet irradiation causes photo-oxygen aging and photo-fries re-arrangement of the composite, and the result was confirmed by FTIR. We correlated the solid particle erosion resistance with aging time, and found that the solid particle erosion resistance of CF/PC composites greatly decreased by UVB irradiation during 15 hours. Furthermore, the eroded material surface was analyzed using scanning electron microscope (SEM). It suggests that ultraviolet aging leads to plasticization and degradation, resulting in reduction of erosion resistance of the composite.
文摘In studying sand beach erosion and protection tactics in Liaoning Province, the authors calculated the wavedata of 27 a Period (1963-1991) at Bayuquan Observation Station in Liaodong Gulf. Together with the beach levellingsand some simple marking stakes monitoring and by having the aid of local annals, the paper analysed the present situationsof the coastline and the causes of sand coastal recession and serious consequences, and then discussed the dynamic processof alongshore sand transport. Simultaneously, based on alongshore sand transport model, oneline cut-and-fill theory anddynamical water model(sea level rise), the authors preliminary estimated beach process for the future in the area.Recently, the coastline is being eroded and 2/3 of the sand coast is subjected to erosion, which the recession rate ofthe individual sector exceed 7. 0 m/a. Coastal erosion has threatened villages, roads, factories and tourist resources. Sealevel rises and the decreasing amount of materials by rivers discharged into the sea and the activities of man, made coast line recession rate accelerate, and cause a great loss of land in the area.
基金supported by The National Natural Science Foundation of China (Grant No. 40861013)Natural Science Foundation of Inner Mongolia (Grant No. 200508010708)
文摘A performance test was conducted in a wind tunnel by changing the principal configuration parameters of a sampler such as the diameter of the container, inlet width and cone height. The results show that the average sand collection rate is from 80% to 90% when any one of the configuration parameter levels is changed. However, the variation of a parameter level results in different ef-fects on the sand collection rate for each soil sample within a certain size range of sand grains. The results show that for various sand grain sized soil sample at each wind speed, the sand collection rate decreases when the diameter of the container changes from 50 mm to 40 mm, the sand collection rate increases by about 2%-3% when the inlet width changes from 10 mm to 8 mm, and the sand collection rate increases by about 3%-4% when cone height is altered from 100 mm to 125 mm. The average sand collection rate is enhanced by 2%-4% for the soil sample of different sized sand grains when the diameter of the container is 50 mm, the inlet width is 8 mm, and cone height is 125 mm.
基金the Ministry of Education,Science,Sports and Culture,Grant-in-Aid for Scientific Research (C) 16560158
文摘Sand erosion is a phenomenon where solid particles impinging to a wall cause serious mechanical damages to the wall surface. This phenomenon is a typical gas-particle two-phase turbulent flow and a multi-physics problem where the flow field, particle trajectory and wall deformation interact with each other. On the other hand, aircraft engines operating in a particulate environment are subjected to the performance and lifetime deterioration due to sand erosion. Especially, the compressor of the aircraft engines is severely damaged. The flow fields of the compressor have strongly three dimensional and unsteady natures. In order to estimate the deterioration due to sand erosion, the sand erosion simulation for a compressor is required under the consideration of the rotor-stator interaction. In the present study, we apply our three dimensional sand erosion prediction code to a single stage axial flow compressor. We numerically investigate the change of the flow field, the particle trajectories, and the eroded wall shape in the compressor, to clarify the effects of sand erosion in the compressor.
基金sponsored by Natural Science Foundation of Henan Province,China(No.212300410306)National Natural Science Foundation of China(No.51931008).
文摘The internal erosion of pipelines in oil and gas storage and transportation engineering is highly risky.High gas velocity of annular flow entrained sand will cause damage to the pipelines,and may further result in thinning of the wall.If this damage lasts for a long time,it may cause pipeline leakage and cause huge economic losses and environmental problems.In this research,an experimental device for studying multiphase flow erosion is designed,including an erosion loop and an experimental elbow that can test the erosion rate.The annular flow state and pipe wall erosion morphology can also be tested by the device.The computational fluid dynamics(CFD)method is combined with the experiment to further study the annular flow erosion mechanism in the pipeline.The relationship between gas-liquid-solid distribution and erosion profile was studied.The results show that the most eroded region occurs be-tween 22.5° and 45° in the axial angle direction and between 90° and 135° in the circumferential angle direction of the elbow.The pits and deep scratches form on the surface of the sample after the sand collision.
基金Project(2011B050400007)supported by the International Cooperation Program of Guangdong Province,China
文摘Ti/TiN/Zr/ZrN multilayer coatings were deposited on Cr_17Ni_2 steel substrates with different surface roughnesses by vacuum cathodic arc deposition method. Microstructure, micro-hardness, adhesion strength and cross-sectional morphology of the obtained multilayer coatings were investigated. The results show that the Vickers hardness of Ti/TiN/Zr/ZrN multilayer coating, with a film thickness of 11.37 μm, is 29.36 GPa. The erosion and salt spray resistance performance of Cr_17Ni_2 steel substrates can be evidently improved by Ti/TiN/Zr/ZrN multilayer coating. The surface roughness of Cr_17Ni_2 steel substrates plays an important role in determining the mechanical and erosion performances of Ti/TiN/Zr/ZrN multilayer coatings. Overall, a low value of the surface roughness of substrates corresponds to an improved performance of erosion and salt spray resistance of multilayer coatings. The optimized performance of Ti/TiN/Zr/ZrN multilayer coatings can be achieved provided that the surface roughness of Cr_17Ni_2 steel substrates is lower than 0.4μm.