In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buri...In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion.展开更多
The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and...The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the X^2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical com- ponents are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions, These pdf's depend on not only the sand particle diameter but also the wind speed.展开更多
Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior ...Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior was proposed for sand migration control.The P_(4)VP could aggregate sand grains spontaneously throughπ-πstacking interactions to withstand the drag forces sufficiently.The influential factors on the self-aggregating behavior of the P_(4)VP were evaluated by adhesion force test.The adsorption as well as desorption behavior of P_(4)VP on sand grains was characterized by scanning electron microscopy and adhesion force test at different pH conditions.The result indicated that the pH altered the forms of surface silanol groups on sand grains,which in turn affected the adsorption process of P_(4)VP.The spontaneous dimerization of P_(4)VP molecules resulting from theπ-πstacking interaction was demonstrated by reduced density gradient analysis,which contributed to the self-aggregating behavior and the thermally reversible characteristic of the P_(4)VP.Dynamic sand stabilization test revealed that the P_(4)VP showed wide pH and temperature ranges of application.The production of sands can be mitigated effectively at 20-130℃ within the pH range of 4-8.展开更多
Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using...Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using polyacrylamide/chromium triacetate hydrogel to investigate sand production in a synthetic sandpack system. To this end, a series of bulk experiments including the bottle test and rheological analysis along with compression tests were conducted. Experimental results indicated that the compressive strength of the sandpack was increased as much as 30 times by injecting 0.5 pore volume of hydrogel. Also, it was found that the increases in cross-linker and polymer concentrations exhibited a positive impact on the compressive strength of the sandpack, mostly by cross-linker concentration(48 psi). Hydrogel with a higher value of cross-linker could retain its viscoelastic properties against the strain which was a maximum of 122% for 0.5 weight ratio of cross-linker/polymer. The presence of salts, in particular divalent cations, has a detrimental effect on the hydrogel stability. The maximum strain value applied on hydrogel in the presence of CaCl_2 was only about 201% as compared to 1010% in the presence of distilled water. Finally, thermogravimetric analysis and its derivative showed that the hydrogel could retain its structure up to 300 °C. The results of this study revealed the potential application of the hydrogel to control sand production.展开更多
Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation...Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation characteristics of Bozhong 19-6 large condensate gas field were summarized. Large gas generation potential of multiple sets of thick humic-sapropelic source rocks in high maturity stage in Bozhong depression was the basis of large gas field formation. The multi-stage tectonic evolution since Indosinian period formed large-scale buried hill traps. The Tanlu fault activity formed multi-type reservoirs, and buried hill metamorphic rock of Archean and sand-conglomerate of Kongdian Formation were high-quality reservoirs. Thick overpressure lacustrine mudstone and weak neotectonic movement provided good preservation conditions. Bozhong 19-6 gas reservoir was a condensate gas reservoir with very high condensate oil content, and the gas origin was humic-sapropelic and kerogen-cracking gas, and the gas field had large gas thickness, high gas column characteristics and the accumulation process was first oil and then gas. The buried hill reservoir was a massive reservoir and the Kongdian reservoir was a stratified reservoir. The gas field had multi-channel hydrocarbon intense charge from overpressure source rocks, atmospheric-weak overpressure reservoir favorable for accumulation, thick overpressure mudstone caprock favorable for preservation, and natural gas ultra-late rapid accumulation model.展开更多
Buried high explosive(HE) charges represent a high threat to military vehicles. The detonation of these charges can lead to significant momentum transfer onto vehicles and their occupants. A detailed understanding of ...Buried high explosive(HE) charges represent a high threat to military vehicles. The detonation of these charges can lead to significant momentum transfer onto vehicles and their occupants. A detailed understanding of the physical processes involved in the loading of vehicle structures is necessary for an optimization of effective countermeasures and protection systems. A quantitative description of the local momentum distribution on the vehicle underbody due to the detonation process is of special importance. In the following, a new test setup is presented that allows the experimental determination of the specific impulse distribution. It is based on a ring arrangement where the elements are nested into each other and the velocity of each ring is correlated with the local specific impulse at its position.The momentum transfer to a vehicle depends on a number of influencing factors such as: charge mass,embedding material(e.g. sand, gravel, clay), density, water content, saturation, depth of burial, ground clearance and vehicle shape. The presented technology is applied to quantify the influence of the embedding material(alluvial sand, quartz sand), the burial depth and the water content on the local specific impulse distribution. The obtained data can be used as initial condition for the numerical simulation of occupant safety assessment and as input for empirical modeling of momentum transfer on structures.展开更多
Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation ...Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content.展开更多
基金the National Natural Science Foundation of China(Nos.41172290 and40572160)
文摘In order to evaluate the feasibility of safe mining close to the contact zone under reduced security coal pillar conditions at a coal mine in eastern China, the interaction mechanism of the interface between deep buried sand and a paleo-weathered rock mass was investigated in the laboratory by direct shear testing. A DRS-1 high pressure soil shear testing machine and orthogonal design method were used in the direct shear tests. Variance and range methods were applied to analyze the sensitivity of each factor that has an influence on the mechanical characters of the interface. The test results show that the normal pressure is the main influencing factor for mechanical characteristics of the interface, while the lithological characters and roughness are minor factors; the shear stress against shear displacement curve for the interface shows an overall hyperbola relationship, no obvious peak stress and dilatancy was observed.When the normal pressure is 6 MPa, the shear strengths of interfaces with different roughness are basically the same, and when the normal pressure is more than 8 MPa, the larger the roughness of the interface, the larger will be the shear strength; the shear strength has a better linear relationship with the normal pressure, which can be described by a linear Mohr–Coulomb criterion.
基金The project supported by the National Natural Science Foundation of China(10532040)the Hundred Talents Project.the Knowledge Innovation Project of Chinese Academy of Sciences(KZCX2-304).
文摘The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the X^2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical com- ponents are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions, These pdf's depend on not only the sand particle diameter but also the wind speed.
基金support from the National Key R&D Program of China(grant number 2018YFA0702400)the Major Scientific and Technological Projects of CNPC(grant number ZD2019-183-007)the China Postdoctoral Science Foundation(grant number 2021M702041)。
文摘Unconsolidated sandstone reservoirs are most susceptible to sand production that leads to a dramatic oil production decline.In this study,the poly(4-vinyl pyridine)(P_(4)VP)incorporated with self-aggregating behavior was proposed for sand migration control.The P_(4)VP could aggregate sand grains spontaneously throughπ-πstacking interactions to withstand the drag forces sufficiently.The influential factors on the self-aggregating behavior of the P_(4)VP were evaluated by adhesion force test.The adsorption as well as desorption behavior of P_(4)VP on sand grains was characterized by scanning electron microscopy and adhesion force test at different pH conditions.The result indicated that the pH altered the forms of surface silanol groups on sand grains,which in turn affected the adsorption process of P_(4)VP.The spontaneous dimerization of P_(4)VP molecules resulting from theπ-πstacking interaction was demonstrated by reduced density gradient analysis,which contributed to the self-aggregating behavior and the thermally reversible characteristic of the P_(4)VP.Dynamic sand stabilization test revealed that the P_(4)VP showed wide pH and temperature ranges of application.The production of sands can be mitigated effectively at 20-130℃ within the pH range of 4-8.
基金support of the Iran National Science Foundation(INSF)with Project No.of 95849122
文摘Sand production is one of the major problems in sandstone reservoirs. Different mechanical and chemical methods have been proposed to control sand production. In this paper, we propose a chemical method based on using polyacrylamide/chromium triacetate hydrogel to investigate sand production in a synthetic sandpack system. To this end, a series of bulk experiments including the bottle test and rheological analysis along with compression tests were conducted. Experimental results indicated that the compressive strength of the sandpack was increased as much as 30 times by injecting 0.5 pore volume of hydrogel. Also, it was found that the increases in cross-linker and polymer concentrations exhibited a positive impact on the compressive strength of the sandpack, mostly by cross-linker concentration(48 psi). Hydrogel with a higher value of cross-linker could retain its viscoelastic properties against the strain which was a maximum of 122% for 0.5 weight ratio of cross-linker/polymer. The presence of salts, in particular divalent cations, has a detrimental effect on the hydrogel stability. The maximum strain value applied on hydrogel in the presence of CaCl_2 was only about 201% as compared to 1010% in the presence of distilled water. Finally, thermogravimetric analysis and its derivative showed that the hydrogel could retain its structure up to 300 °C. The results of this study revealed the potential application of the hydrogel to control sand production.
基金Supported by the China National Science and Technology Major Project(2016ZX05024-003-001)
文摘Based on the study of natural gas resource, low buried hill trap formation mechanism, high quality reservoir control factors and natural gas preservation conditions, the formation conditions and reservoir accumulation characteristics of Bozhong 19-6 large condensate gas field were summarized. Large gas generation potential of multiple sets of thick humic-sapropelic source rocks in high maturity stage in Bozhong depression was the basis of large gas field formation. The multi-stage tectonic evolution since Indosinian period formed large-scale buried hill traps. The Tanlu fault activity formed multi-type reservoirs, and buried hill metamorphic rock of Archean and sand-conglomerate of Kongdian Formation were high-quality reservoirs. Thick overpressure lacustrine mudstone and weak neotectonic movement provided good preservation conditions. Bozhong 19-6 gas reservoir was a condensate gas reservoir with very high condensate oil content, and the gas origin was humic-sapropelic and kerogen-cracking gas, and the gas field had large gas thickness, high gas column characteristics and the accumulation process was first oil and then gas. The buried hill reservoir was a massive reservoir and the Kongdian reservoir was a stratified reservoir. The gas field had multi-channel hydrocarbon intense charge from overpressure source rocks, atmospheric-weak overpressure reservoir favorable for accumulation, thick overpressure mudstone caprock favorable for preservation, and natural gas ultra-late rapid accumulation model.
文摘Buried high explosive(HE) charges represent a high threat to military vehicles. The detonation of these charges can lead to significant momentum transfer onto vehicles and their occupants. A detailed understanding of the physical processes involved in the loading of vehicle structures is necessary for an optimization of effective countermeasures and protection systems. A quantitative description of the local momentum distribution on the vehicle underbody due to the detonation process is of special importance. In the following, a new test setup is presented that allows the experimental determination of the specific impulse distribution. It is based on a ring arrangement where the elements are nested into each other and the velocity of each ring is correlated with the local specific impulse at its position.The momentum transfer to a vehicle depends on a number of influencing factors such as: charge mass,embedding material(e.g. sand, gravel, clay), density, water content, saturation, depth of burial, ground clearance and vehicle shape. The presented technology is applied to quantify the influence of the embedding material(alluvial sand, quartz sand), the burial depth and the water content on the local specific impulse distribution. The obtained data can be used as initial condition for the numerical simulation of occupant safety assessment and as input for empirical modeling of momentum transfer on structures.
基金National Key R&D Program of China(2016YFC0400204)National Natural Science Foundation of China(51479161,51279157,51779205)。
文摘Based on the experimental data,this study investigated the effect of sand content of muddy water on water and nitrogen transport characteristics of the single-line interference infiltration under film hole irrigation with muddy water and fertilizer.The relationship between the single-line interference infiltration parameters,the sand content,the wetting front movement distances,and the sand content were all established.The model of the cumulative infiltration volume of per unit film pore area,the vertical and horizontal wetting front movement distance of the free surface,and the wetting front movement distance of the interference center with sand content and infiltration time were proposed.Reveal the law of the change of soil water content and the distribution of NO_(3)^(-)-N content based on different muddy water sand content.The results indicate that at the same infiltration time,as the muddy water sand content increases,the cumulative infiltration volume per unit pore area decreases.The infiltration index of the free infiltration and the single-line interference vary little when the sand content increases,mainly are around 0.64 and 0.58.The relationship between infiltration parameters a,b and the sand content is linear function.At the same location,the more the sand content,the smaller the wetting front movement distance in free surface and the single-line interference surface,the less the NO_(3)^(-)-N content.