Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expr...Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.展开更多
Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale m...Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.展开更多
The Qaidam Basin is one of the main areas where the desert of the Qinghai-Xizang Plateau is distributed.According to the envirotunment records and the age of stratigraphy in Xiaxitai section in southeast part of Qaida...The Qaidam Basin is one of the main areas where the desert of the Qinghai-Xizang Plateau is distributed.According to the envirotunment records and the age of stratigraphy in Xiaxitai section in southeast part of Qaidam Basin,this paper reached the following conclusions: the desert development, formation of the cold-dry climate, evolution of natural environment and their reverse changes occurred frequently since the late glacial. In eolian sand deposits, the YoungerDryas event clearly appeared, which manifesed a dry-cold climatic period. Now there are two different opinions about theclimatic effect of Younger Dryas. According to the predecessors’ research and the field work of the authors, it is considered that the Younger Dryas event not only exists in different climatic zones of China, but the manifests the unitary drycold climatic effect.展开更多
The Upper Triassic Xujiahe (须家河) Formation in the Sichuan (四川) Basin, Southwest China is distinctive for the basin-scale sand deposition. This relatively rare sedimentary phenomenon has not been well interpre...The Upper Triassic Xujiahe (须家河) Formation in the Sichuan (四川) Basin, Southwest China is distinctive for the basin-scale sand deposition. This relatively rare sedimentary phenomenon has not been well interpreted. Here we addressed this issue by discussing sedimentary framework and conceptual model. Analysis of sedimentary setting implied that the basin received transgression during the deposition. It had multiple provenance supplies and river networks, as being surrounded by old- lands in multiple directions including the north, east and south. Thus, the basin was generally charac-terized by coastal and widely open and shallow lacustrine deposition during the Late Triassic Xujiahe period. This is similar to the modern well-known Poyang (鄱阳) Lake. Therefore, we investigated the framework and conceptual model of the Sichuan Basin during the Xujiahe period with an analogue to the Poyang Lake. Results show that the conceptual model of the deposition can be divided into transgressive and regressive stages. The first, third and fifth mem- bers of the formation are in transgressive stage and the deposits are dominated by shore and shallow lacustrine mud. In contrast, the deposition is mainly of braided river channel sand deposits during the regressive stage, mainly including the second, fourth and sixth members of the formation. The sand deposited in almost the entire basin because of the lateral migration and forward moving of the cross networks of the braided rivers. The multiple alternations of short and rapid transgression and relatively long regression are beneficial to the basin-scale sand deposition. Thus, the main channel of the braided river and its extensional areas are favorable for the development of hydrocarbon reservoir. This provides practical significance to the reservoir evaluation and exploration. In addition, the results also justify the relatively distinctive sedimentary phenomenon in the study area and may also have im- plications for understanding the large-scale sand deposition elsewhere.展开更多
The dry climate which appeared about 8-7 Ma ago in South Asia has been interpreted as results of the intensification of Asian monsoon caused by the uplift of the Qinghai-Xizang Plateau at its maximum altitude around t...The dry climate which appeared about 8-7 Ma ago in South Asia has been interpreted as results of the intensification of Asian monsoon caused by the uplift of the Qinghai-Xizang Plateau at its maximum altitude around that time. Whether it is or not, it is a critical problem. A total of 55 samples were taken from the Tertiary red earth and Quaternary lacustrine deposits and loess in the Linxia Basin which is located in the northeastern margin of the展开更多
Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this...Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.展开更多
Different configurational orders of sand bodies and interlayers in lacustrine nearshore sand bar reservoirs frequently interact,causing complicated genesis and distribution of argillaceous sediments,as well as other i...Different configurational orders of sand bodies and interlayers in lacustrine nearshore sand bar reservoirs frequently interact,causing complicated genesis and distribution of argillaceous sediments,as well as other issues.This paper investigates the spatial configuration of sand and mud in the sand bar reservoir,and analyzes its internal structure.Modern sand bar deposits in the Xiashan Lake,Shandong Province,China,were analyzed and compared with the sand bar reservoirs of the Member 2 of the Paleogene Shahejie Formation in the Banqiao Sag,China.The configurational mode of sand bar deposits was explored from the perspective of the spatial distribution and composition relationships between sand and mud.Based on the alternate deposition characteristics of sand and mud in the longitudinal direction,lacustrine nearshore sand bars can be divided into three sedimentary combination patterns:thin-sand and thin-mud interbed pattern,thick-mud thick-sand pattern,and thin-mud thick-sand pattern.Their mud components manifest as the deposition of fine-grained lithofacies of multiple genetic types.These include(semi-)deep lacustrine mud,sand and mud interbedded beach,argillaceous sediments in the water retention area behind the bar,and fall-silt seams that resulted from flood discharge.By summarizing the specific developmental locations and sequential relationships of each fine-grained argillaceous facies in modern sand bar deposits,a depositional process-based argillaceous sediment composition model is proposed.Based on this,this paper discusses the spatial configuration of sand bodies and argillaceous sediments in sand bar reservoirs,and introduces the typical stratigraphic structures of sand bars in two environments,i.e.,vertical superposition and lateral migration.In lacustrine nearshore sand bar reservoirs,the deposition and preservation degrees of mud mainly depend on three factors:accommodation space change,frequency of base-level cycles,and exposure-erosion time.These in turn influence the continuity and relative contents of sand and mud in reservoirs.The distribution of argillaceous sediments forms different orders of interlayers,which affects the heterogeneity and fluid percolation of sand bar reservoirs.Clarifying the space-matching relationship of sand and mud in sand bar deposits provides geological models and information parameters for the refined characterization and modeling of the internal configuration of sand bar reservoirs.Furthermore,this work offers guidance for the optimal adjustment of reservoir development strategies or the optimization of reservoir development plans.展开更多
The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand par...The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand particles in bed load and POM in vegetated area on sand bars. The purpose of this study is to clarify the characteristics of deposition of POM with bed load on sandbars with the riparian vegetation. A basic experiment on POM transport and deposition with vegetation is conducted in a laboratory flume. It demonstrates that several issues still remain to be future investigated. In particular, the shear due to the bed roughness in the vegetated area and the transport and deposition process of sand particles and POM are required to be described by the proper modeling which will be introduced into a simulation model of various fluvial processes. The main results of this study are that ripples are formed by bed load in riparian vegetation and POM deposition is promoted by ripple behavior. Based on these results, the POM deposition with ripples in vegetated area is described by a conceptual model which will affect various aspects in ecosystem management based on fluvial processes.展开更多
The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by s...The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).展开更多
In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid s...In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool.展开更多
Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the ...Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the northern region in terms of aeolian sand geomorphology and formation environment. Based on the field ob- servation data of airflow and aeolian sand transport, continuous monitoring data of erosional and depositional processes between 14 April 2009 and 9 April 2011 and data of surface sand grains from the classical section along the southern edge of the Taklimakan Desert Highway, this paper reported the blown sand motion within the sand-control system of the highway. The main results are as follows: 1) The existing sand-control system is highly effective in preventing and controlling desertification. Wind velocities within the sand-control system were ap- proximately 33%-100% of those for the same height above the mobile sand surface. Aeolian sand fluxes were approximately 0-31.21% of those of the mobile sand surface. Sand grains inside the system, with a mean diameter of 2.89 q), were finer than those (2.15 q)) outside the system. In addition, wind velocities basically followed a loga- rithmic law, but the airflow along the classical section was mainly determined by topography and vegetation. 2) There were obvious erosional and depositional phenomena above the surface within the sand-control system, and these phenomena have very consistent patterns for all observation points in the two observed years. The total thicknesses of erosion and deposition ranged from 0.30 to 14.60 cm, with a mean value of 3.67 cm. In contrast, the deposition thicknesses were 1.90-22.10 cm, with a mean value of 7.59 cm, and the erosion thicknesses were 3.51-15.10 cm, with a mean value of 8.75 cm. The results will aid our understanding of blown sand within the sand-control system and provide a strong foundation for optimizing the sand-control system.展开更多
基金funded by the Strategic Priority Research Program of the Chinese Academy of Sciences"Environmental Changes and Green Silk Road Construction in Pan-Third Pole Region"(XDA2003020201)the National Key Research and Development Program of China(2017YFE0109200)the National Natural Science Foundation of China(41571011)
文摘Many desert expressways are affected by the deposition of the wind-blown sand,which might block the movement of vehicles or cause accidents.W-beam central guardrails,which are used to improve the safety of desert expressways,are thought to influence the deposition of the wind-blown sand,but this has yet not to be studied adequately.To address this issue,we conducted a wind tunnel test to simulate and explore how the W-beam central guardrails affect the airflow,the wind-blown sand flux and the deposition of the wind-blown sand on desert expressways in sandy regions.The subgrade model is 3.5 cm high and 80.0 cm wide,with a bank slope ratio of 1:3.The W-beam central guardrails model is 3.7 cm high,which included a 1.4-cm-high W-beam and a 2.3-cm-high stand column.The wind velocity was measured by using pitot-static tubes placed at nine different heights(1,2,3,5,7,10,15,30 and 50 cm)above the floor of the chamber.The vertical distribution of the wind-blown sand flux in the wind tunnel was measured by using the sand sampler,which was sectioned into 20 intervals.In addition,we measured the wind-blown sand flux in the field at K50 of the Bachu-Shache desert expressway in the Taklimakan Desert on 11 May 2016,by using a customized 78-cm-high gradient sand sampler for the sand flux structure test.Obstruction by the subgrade leads to the formation of two weak wind zones located at the foot of the windward slope and at the leeward slope of the subgrade,and the wind velocity on the leeward side weakens significantly.The W-beam central guardrails decrease the leeward wind velocity,whereas the velocity increases through the bottom gaps and over the top of the W-beam central guardrails.The vertical distribution of the wind-blown sand flux measured by wind tunnel follows neither a power-law nor an exponential function when affected by either the subgrade or the W-beam central guardrails.At 0.0H and 0.5H(where H=3.5 cm,which is the height of the subgrade),the sand transport is less at the 3 cm height from the subgrade surface than at the 1 and 5 cm heights as a result of obstruction by the W-beam central guardrails,and the maximum sand transportation occurs at the 5 cm height affected by the subgrade surface.The average saltation height in the presence of the W-beam central guardrails is greater than the subgrade height.The field test shows that the sand deposits on the overtaking lane leeward of the W-beam central guardrails and that the thickness of the deposited sand is determined by the difference in the sand mass transported between the inlet and outlet points,which is consistent with the position of the minimum wind velocity in the wind tunnel test.The results of this study could help us to understand the hazards of the wind-blown sand onto subgrade with the W-beam central guardrails.
基金Project(51108190) supported by the National Natural Science Foundation of ChinaProject(2012ZC27) supported by the Independence Research Subject from State Key Laboratory of Subtropical Building Science,ChinaProject(GTCC 2008-253) supported by the Research Subject from Guangzhou City,China
文摘Against the background of the sand-flow foundation treatment engineering of Guangzhou Zhoutouzui variable cross-section immersed tunnel, a kind of sand deposit-detecting method was devised on the basis of full-scale model test of sand-flow method. The real-time data of sand-deposit height and radius were obtained by the self-developed sand-deposit detectors. The test results show that the detecting method is simple and has high precision. In the use of sand-flow method, the sand-carrying capability of fluid is limited, and sand particles are all transported to the sand-deposit periphery through crater, gap and chutes after the sand deposit formed. The diffusion range of the particles outside the sand-deposit does not exceed 2.0 m. Severe sorting of sand particles is not observed because of the unique oblique-layered depositing process. The temporal and spatial distributions of gap and chutes directly affect the sand-deposit expansion, and the expansion trend of the average sand-deposit radius accords with quadratic time-history curve.
文摘The Qaidam Basin is one of the main areas where the desert of the Qinghai-Xizang Plateau is distributed.According to the envirotunment records and the age of stratigraphy in Xiaxitai section in southeast part of Qaidam Basin,this paper reached the following conclusions: the desert development, formation of the cold-dry climate, evolution of natural environment and their reverse changes occurred frequently since the late glacial. In eolian sand deposits, the YoungerDryas event clearly appeared, which manifesed a dry-cold climatic period. Now there are two different opinions about theclimatic effect of Younger Dryas. According to the predecessors’ research and the field work of the authors, it is considered that the Younger Dryas event not only exists in different climatic zones of China, but the manifests the unitary drycold climatic effect.
基金supported by the Major State Basic Research Development Program(No.2012CB 214803)the China's National Science & Technology Special Project (No.2011ZX05004-005-03)+1 种基金the PetroChina Youth Innovation Foundation(No.2011D-5006-0105)the Key Subject Construction Project of Sichuan Province,China(No.SZD0414)
文摘The Upper Triassic Xujiahe (须家河) Formation in the Sichuan (四川) Basin, Southwest China is distinctive for the basin-scale sand deposition. This relatively rare sedimentary phenomenon has not been well interpreted. Here we addressed this issue by discussing sedimentary framework and conceptual model. Analysis of sedimentary setting implied that the basin received transgression during the deposition. It had multiple provenance supplies and river networks, as being surrounded by old- lands in multiple directions including the north, east and south. Thus, the basin was generally charac-terized by coastal and widely open and shallow lacustrine deposition during the Late Triassic Xujiahe period. This is similar to the modern well-known Poyang (鄱阳) Lake. Therefore, we investigated the framework and conceptual model of the Sichuan Basin during the Xujiahe period with an analogue to the Poyang Lake. Results show that the conceptual model of the deposition can be divided into transgressive and regressive stages. The first, third and fifth mem- bers of the formation are in transgressive stage and the deposits are dominated by shore and shallow lacustrine mud. In contrast, the deposition is mainly of braided river channel sand deposits during the regressive stage, mainly including the second, fourth and sixth members of the formation. The sand deposited in almost the entire basin because of the lateral migration and forward moving of the cross networks of the braided rivers. The multiple alternations of short and rapid transgression and relatively long regression are beneficial to the basin-scale sand deposition. Thus, the main channel of the braided river and its extensional areas are favorable for the development of hydrocarbon reservoir. This provides practical significance to the reservoir evaluation and exploration. In addition, the results also justify the relatively distinctive sedimentary phenomenon in the study area and may also have im- plications for understanding the large-scale sand deposition elsewhere.
文摘The dry climate which appeared about 8-7 Ma ago in South Asia has been interpreted as results of the intensification of Asian monsoon caused by the uplift of the Qinghai-Xizang Plateau at its maximum altitude around that time. Whether it is or not, it is a critical problem. A total of 55 samples were taken from the Tertiary red earth and Quaternary lacustrine deposits and loess in the Linxia Basin which is located in the northeastern margin of the
文摘Molecular deposition filming flooding (MDFF) is a novel oil recovery technique based on the thermopositive monolayer electrostatic adsorption of the MDFF agent on different interfaces within reservoir systems. In this paper, the adsorption property of the MDFF agent, MD-1, on quartz sand has been studied through adsorption experiments at different pH and temperatures. Experimental data are also analyzed kinetically and thermodynamically. The results show that the adsorption of MD-1 on quartz sand takes place mainly because of electrostatic interactions, which corresponds to adsorption that increases with pH. Kinetic analyses show that at a higher pH the activation energy for adsorption gets lower and, therefore, the adsorption becomes quicker for MD-1 on quartz sand. Thermodynamic analyses show that pH plays an important role in the adsorption of MD-1 on quartz sand. At a higher pH, more negative surface charges result in the increase of electrostatic interactions between MD-1 and quartz sand. Therefore, the saturated adsorption amount increases and more adsorption heat will be released.
基金Supported by the National Natural Science Foundation of China(41702359)China National Science and Technology Major Project(2016ZX05033003-003).
文摘Different configurational orders of sand bodies and interlayers in lacustrine nearshore sand bar reservoirs frequently interact,causing complicated genesis and distribution of argillaceous sediments,as well as other issues.This paper investigates the spatial configuration of sand and mud in the sand bar reservoir,and analyzes its internal structure.Modern sand bar deposits in the Xiashan Lake,Shandong Province,China,were analyzed and compared with the sand bar reservoirs of the Member 2 of the Paleogene Shahejie Formation in the Banqiao Sag,China.The configurational mode of sand bar deposits was explored from the perspective of the spatial distribution and composition relationships between sand and mud.Based on the alternate deposition characteristics of sand and mud in the longitudinal direction,lacustrine nearshore sand bars can be divided into three sedimentary combination patterns:thin-sand and thin-mud interbed pattern,thick-mud thick-sand pattern,and thin-mud thick-sand pattern.Their mud components manifest as the deposition of fine-grained lithofacies of multiple genetic types.These include(semi-)deep lacustrine mud,sand and mud interbedded beach,argillaceous sediments in the water retention area behind the bar,and fall-silt seams that resulted from flood discharge.By summarizing the specific developmental locations and sequential relationships of each fine-grained argillaceous facies in modern sand bar deposits,a depositional process-based argillaceous sediment composition model is proposed.Based on this,this paper discusses the spatial configuration of sand bodies and argillaceous sediments in sand bar reservoirs,and introduces the typical stratigraphic structures of sand bars in two environments,i.e.,vertical superposition and lateral migration.In lacustrine nearshore sand bar reservoirs,the deposition and preservation degrees of mud mainly depend on three factors:accommodation space change,frequency of base-level cycles,and exposure-erosion time.These in turn influence the continuity and relative contents of sand and mud in reservoirs.The distribution of argillaceous sediments forms different orders of interlayers,which affects the heterogeneity and fluid percolation of sand bar reservoirs.Clarifying the space-matching relationship of sand and mud in sand bar deposits provides geological models and information parameters for the refined characterization and modeling of the internal configuration of sand bar reservoirs.Furthermore,this work offers guidance for the optimal adjustment of reservoir development strategies or the optimization of reservoir development plans.
文摘The transport and deposition of particulate organic matter (POM) in river streams has recently received much attention as one of important ecological processes in rivers. We focused on interacted behaviors of sand particles in bed load and POM in vegetated area on sand bars. The purpose of this study is to clarify the characteristics of deposition of POM with bed load on sandbars with the riparian vegetation. A basic experiment on POM transport and deposition with vegetation is conducted in a laboratory flume. It demonstrates that several issues still remain to be future investigated. In particular, the shear due to the bed roughness in the vegetated area and the transport and deposition process of sand particles and POM are required to be described by the proper modeling which will be introduced into a simulation model of various fluvial processes. The main results of this study are that ripples are formed by bed load in riparian vegetation and POM deposition is promoted by ripple behavior. Based on these results, the POM deposition with ripples in vegetated area is described by a conceptual model which will affect various aspects in ecosystem management based on fluvial processes.
文摘The depositional environment of the sands of the cover formation is discussed. This study aims to determine the paleoenvironments of deposition of the sands of the cover formation in the Batéké Plateaus by studying sedimentary dynamics based on the description of lithological facies in the field and granulometric analyses in the laboratory. In the field, six (6) lithostratigraphic logs were surveyed and 42 sand samples were taken for laboratory analysis. In the laboratory, the samples underwent granulometric, sieving and sedimentometry analyses, after washing with running water using a 63 µm sieve. These analyses made it possible to determine the granulometric classes of the samples. The sieving results allowed to determine the granulometric parameters (mean, standard deviation, mode, median, skewness, flattening or kurtosis) using the method of moments with the software “Gradistat V.8”, granulometric parameters with which the granulometric facies, the mode of transport and the deposition environment were determined using the diagrams. Morphoscopy made it possible to determine the form and aspect of the surface of the quartz grains constituting these sands. Granulometric analyses show that these silty-clay or clayey-silty sands are fine sands and rarely medium sands, moderately to well sorted and rarely well sorted. The dominant granulometric facies is hyperbolic (sigmoid), with parabolic facies being rare. The primary mode of transport of these sands is saltation, which dominates rolling. The dispersion of points in the diagrams shows that these sands originate from two depositional environments: aeolian and fluvial. Morphoscopic analysis reveals the presence of clean rounded matt grains (RM), dirty rounded matt grains (RS), shiny blunt grains (EL) and shiny rounded grains (RL). The rounded matt grains exhibit several impact marks. The presence of dirty rounded grains with a ferruginous cement on their surface indicates that these sands have been reworked. These sands have undergone two types of transport, first by wind (aeolian environment) and then by water (fluvial environment).
基金Projects(51004082,51222406)supported by the National Natural Science Foundation of ChinaProject(NCET-12-1061)supported by the New Century Excellent Talents in University of ChinaProjects(12TD007,2011JQ0020)supported by Scientific Research Innovation Team Project of Sichuan and the Sichuan Youth Sci-tech Fund,China
文摘In the view of the problems existing in horizontal well,such as sand depositing and cleaning difficulty of borehole,a technology with rotating jet suitable to resolution of the problems was presented.Based on liquid solid two-phase flow theory,the analyses on the sand movement law and the swirling field influential factors were conducted.Results show that:1) With the increasing of displacement in horizontal section annulus,swirling field strength increases,and when the displacement is constant,the closer from the nozzle,the stronger the swirling field strength is;2) Head rotating speed and liquid viscosity have little influence on the swirling field strength,but the sand-carrying rate of fluid can increase by increasing liquid viscosity in a certain range;3) Rotating the string and reducing its eccentricity in annulus are conducive for sand migration in the annulus;4) The sand can be suspended and accelerated again and the swirling field strength is enhanced by the helix agitator.Hence,the research results provide the theoretical basis for the design and application of rotating jet tool.
基金supported by the National Natural Science Foundation of China (41271020, 41330746)CERS-China Equipment and Education Resources System (CERS-1-109)
文摘Although scientists have performed many studies in the Taklimakan Desert, few of them have reported the blown sand motion along the southern edge of the Taklimakan Desert Highway, which differs significantly from the northern region in terms of aeolian sand geomorphology and formation environment. Based on the field ob- servation data of airflow and aeolian sand transport, continuous monitoring data of erosional and depositional processes between 14 April 2009 and 9 April 2011 and data of surface sand grains from the classical section along the southern edge of the Taklimakan Desert Highway, this paper reported the blown sand motion within the sand-control system of the highway. The main results are as follows: 1) The existing sand-control system is highly effective in preventing and controlling desertification. Wind velocities within the sand-control system were ap- proximately 33%-100% of those for the same height above the mobile sand surface. Aeolian sand fluxes were approximately 0-31.21% of those of the mobile sand surface. Sand grains inside the system, with a mean diameter of 2.89 q), were finer than those (2.15 q)) outside the system. In addition, wind velocities basically followed a loga- rithmic law, but the airflow along the classical section was mainly determined by topography and vegetation. 2) There were obvious erosional and depositional phenomena above the surface within the sand-control system, and these phenomena have very consistent patterns for all observation points in the two observed years. The total thicknesses of erosion and deposition ranged from 0.30 to 14.60 cm, with a mean value of 3.67 cm. In contrast, the deposition thicknesses were 1.90-22.10 cm, with a mean value of 7.59 cm, and the erosion thicknesses were 3.51-15.10 cm, with a mean value of 8.75 cm. The results will aid our understanding of blown sand within the sand-control system and provide a strong foundation for optimizing the sand-control system.