When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux...When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as ran- dom variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject liftoff probabilities versus the incident and creeping velocities are predicted.展开更多
A three-dimensional CFD-DEM model is proposed to investigate the aeolian sand movement.The results show that the mean particle horizontal velocity can be expressed by a power function of heights.The probability distri...A three-dimensional CFD-DEM model is proposed to investigate the aeolian sand movement.The results show that the mean particle horizontal velocity can be expressed by a power function of heights.The probability distribution of the impact and lift-off velocities of particles can be described by a log-normal function,and that of the impact and lift-off angles can be expressed by an exponential function.The probability distribution of particle horizontal velocity at different heights can be described as a lognormal function,while the probability distribution of longitudinal and vertical velocity can be described as a normal function.The comparison with previous two-dimensional calculations shows that the variations of mean particle horizontal velocity along the heights in two-dimensional and three-dimensional models are similar.However,the mean particle density of the two-dimensional model is larger than that in reality,which will result in the overestimation of sand transportation rate in the two-dimensional calculation.The study also shows that the predicted probability distributions of particle velocities are in good agreement with the experimental results.展开更多
With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, ...With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investigation and analysis on aeolian sand landform origin, morphological type and distribution feature, the two typical landform assemblages, complex transverse dune chain-alluvial plain and huge longitudinal dune ridge-interridge lowland in the Taklimakan Desert were divided into several characteristic zones of aeolian sand movement states. From this one can qualitatively judge the types and severities of sand disasters at various topographic positions in the engineering installation region and further put forward concrete schemes and measures to control sand damages.展开更多
With the PDPA(Phase Doppler Particle Analyzer) measurement technology,the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different height...With the PDPA(Phase Doppler Particle Analyzer) measurement technology,the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function,and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28° and 39°,and the mean lift-off angle ranges from 30° to 44°. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11,and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew,the horizontal velocity of particles at 20 mm height varies widely,and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.展开更多
The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and...The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the X^2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical com- ponents are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions, These pdf's depend on not only the sand particle diameter but also the wind speed.展开更多
Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-d...Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-dust horizontal flux of near-surface was carried out in Tazhong from January to December 2009. By measur- ing the sand-dust horizontal flux throughout sixteen sand-dust weather processes with a 200-cm tall Big Spring Number Eight (BSNE) sampler tower, we quantitatively analyzed the vertical variation of the sand-dust horizontal flux. And the total sand-dust horizontal flux of different time-series that passed through a section of 100 cm in width and 200 cm in height was estimated combining the data of saltation movement continuously recorded by piezo- electric saltation sensors (Sensit). The results indicated that, in the surface layer ranging from 0-200 cm, the inten- sity of sand-dust horizontal flux decreased with the increase of the height, and the physical quantities obeyed power function well. The total sand-dust horizontal flux of the sixteen sand-dust weather processes that passed through a section of 100 cm in width and 200 cm in height was about 2,144.9 kg, the maximum of one sand-dust weather event was about 396.3 kg, and the annual total sand-dust horizontal flux was about 3,903.2 kg. The high levels of aeolian sand transport occurred during daytime, especially from 13:00 to 16:00 in the afternoon. We try to develop a new method for estimation of the detailed time-series of aeolian sand transport.展开更多
A new theoretical model is formulated to describe internal movement mechanisms of the sand ridges and sand waves based on the momentum equation of a solid-liquid two-phase flow under a shear flow. Coupling this equati...A new theoretical model is formulated to describe internal movement mechanisms of the sand ridges and sand waves based on the momentum equation of a solid-liquid two-phase flow under a shear flow. Coupling this equation with two-dimensional shallow water equations and wave reflection-diffraction equation of mild slope, a two-dimensional coupling model is established and a validation is carried out by observed hydrogeology, tides,waves and sediment. The numerical results are compared with available observations. Satisfactory agreements are achieved. This coupling model is then applied to the Dongfang 1-1 Gas Field area to quantitatively predict the movement and evolution of submarine sand ridges and sand waves. As a result, it is found that the sand ridges and sand waves movement distance increases year by year, but the development trend is stable.展开更多
基金The project was supported by the National Natural Science Foundation of China(10532040,10601022)
文摘When incident particles impact into a sand bed in wind-blown sand movement, rebound of the incident particles and eject of the sand particles by the incident particles affect directly the development of wind sand flux. In order to obtain rebound and eject lift-off probability of the sand particles, we apply the particle-bed stochastic collision model presented in our pervious works to derive analytic solutions of velocities of the incident and impacted particles in the postcollision bed. In order to describe randomness inherent in the real particle-bed collision, we take the incident angle, the impact position and the direction of resultant action of sand particles in sand bed on the impacted sand particle as ran- dom variables, and calculate the rebound and eject velocities, angles and coefficients (ratio of rebound and eject velocity to incident velocity). Numerical results are found in accordance with current experimental results. The rebound and eject liftoff probabilities versus the incident and creeping velocities are predicted.
基金supported by the National Natural Science Foundation of China (Grant No. 10972223) and CAS Innovation Program
文摘A three-dimensional CFD-DEM model is proposed to investigate the aeolian sand movement.The results show that the mean particle horizontal velocity can be expressed by a power function of heights.The probability distribution of the impact and lift-off velocities of particles can be described by a log-normal function,and that of the impact and lift-off angles can be expressed by an exponential function.The probability distribution of particle horizontal velocity at different heights can be described as a lognormal function,while the probability distribution of longitudinal and vertical velocity can be described as a normal function.The comparison with previous two-dimensional calculations shows that the variations of mean particle horizontal velocity along the heights in two-dimensional and three-dimensional models are similar.However,the mean particle density of the two-dimensional model is larger than that in reality,which will result in the overestimation of sand transportation rate in the two-dimensional calculation.The study also shows that the predicted probability distributions of particle velocities are in good agreement with the experimental results.
文摘With both sides of the Taklimakan Desert highway line as the study area, three typical aeolian sand landforms, i.e. complex dune ridge, barchan dune and flat sand land, were selected as sand beds for the observation, analysis and research of the characteristics of aeolian sand movement such as aeolian sand stream structure, sand transport intensity, etc. in the Taklimakan Desert. The results show that there is a linear relation between the height and the log of sand transport rate over transverse dune chain, longitudinal dune ridge and flat sand land, i.e. the sand transport percentage decreases exponentially with increasing height. Sand transport rate within the 10 cm height above the bed surface accounts for 80%-95% of the total sand transport rate of the observed height (40 cm), while the sand transport rate in 20 cm occupies 98% of the total amount. Sand transport rate (g·cm-1·min-1) differs greatly with respect to different landform types and different topographic positions. Based on the investigation and analysis on aeolian sand landform origin, morphological type and distribution feature, the two typical landform assemblages, complex transverse dune chain-alluvial plain and huge longitudinal dune ridge-interridge lowland in the Taklimakan Desert were divided into several characteristic zones of aeolian sand movement states. From this one can qualitatively judge the types and severities of sand disasters at various topographic positions in the engineering installation region and further put forward concrete schemes and measures to control sand damages.
基金the National Natural Science Foundation of China (Grant No. 10532030)the National Basic Research Program of China (Grant No. G2000048702)
文摘With the PDPA(Phase Doppler Particle Analyzer) measurement technology,the probability distributions of particle impact and lift-off velocities on bed surface and the particle velocity distributions at different heights are detected in a wind tunnel. The results show that the probability distribution of impact and lift-off velocities of sand grains can be expressed by a log-normal function,and that of impact and lift-off angles complies with an exponential function. The mean impact angle is between 28° and 39°,and the mean lift-off angle ranges from 30° to 44°. The mean lift-off velocity is 0.81-0.9 times the mean impact velocity. The proportion of backward-impacting particles is 0.05-0.11,and that of backward-entrained particles ranges from 0.04 to 0.13. The probability distribution of particle horizontal velocity at 4 mm height is positive skew,the horizontal velocity of particles at 20 mm height varies widely,and the variation of the particle horizontal velocity at 80 mm height is less than that at 20 mm height. The probability distribution of particle vertical velocity at different heights can be described as a normal function.
基金The project supported by the National Natural Science Foundation of China(10532040)the Hundred Talents Project.the Knowledge Innovation Project of Chinese Academy of Sciences(KZCX2-304).
文摘The probability distributions of sand particles' lift-off and incident velocities in a wind-blown sand flux play very important roles in the simulation of the wind-blown sand movement. In this paper, the vertical and the horizontal speeds of sand particles located at 1.0 mm above a sand-bed in a wind-blown sand flux are observed with the aid of Phase Doppler Anemometry (PDA) in a wind tunnel. Based on the experimental data, the probability distributions of not only the vertical lift-off speed but also the lift-off velocity as well as its horizontal component and the incident velocity as well as its vertical and horizontal components can be obtained by the equal distance histogram method. It is found, according to the results of the X^2-test for these probability distributions, that the probability density functions (pdf's) of the sand particles' lift-off and incident velocities as well as their vertical com- ponents are described by the Gamma density function with different peak values and shapes and the downwind incident and lift-off horizontal speeds, respectively, can be described by the lognormal and the Gamma density functions, These pdf's depend on not only the sand particle diameter but also the wind speed.
基金funded by the National Natural Science Foundation of China (41175017)the Central Scientific Research Institute of the public basic scientific research business professional ( IDM201103)the R&D Special Fund for Public Welfare Industry (Meteorology)(GYHY201106025)
文摘Tazhong is the hinterland and a sandstorm high-frequency area of the Taklimakan Desert. However, little is known about the detailed time-series of aeolian sand transport in this area. An experiment to study the sand-dust horizontal flux of near-surface was carried out in Tazhong from January to December 2009. By measur- ing the sand-dust horizontal flux throughout sixteen sand-dust weather processes with a 200-cm tall Big Spring Number Eight (BSNE) sampler tower, we quantitatively analyzed the vertical variation of the sand-dust horizontal flux. And the total sand-dust horizontal flux of different time-series that passed through a section of 100 cm in width and 200 cm in height was estimated combining the data of saltation movement continuously recorded by piezo- electric saltation sensors (Sensit). The results indicated that, in the surface layer ranging from 0-200 cm, the inten- sity of sand-dust horizontal flux decreased with the increase of the height, and the physical quantities obeyed power function well. The total sand-dust horizontal flux of the sixteen sand-dust weather processes that passed through a section of 100 cm in width and 200 cm in height was about 2,144.9 kg, the maximum of one sand-dust weather event was about 396.3 kg, and the annual total sand-dust horizontal flux was about 3,903.2 kg. The high levels of aeolian sand transport occurred during daytime, especially from 13:00 to 16:00 in the afternoon. We try to develop a new method for estimation of the detailed time-series of aeolian sand transport.
基金The National Natural Science Foundation of China under contract No.51079095the Science Fund for Creative Research Groups of the National Natural Science Foundation of China under contract No.51021004
文摘A new theoretical model is formulated to describe internal movement mechanisms of the sand ridges and sand waves based on the momentum equation of a solid-liquid two-phase flow under a shear flow. Coupling this equation with two-dimensional shallow water equations and wave reflection-diffraction equation of mild slope, a two-dimensional coupling model is established and a validation is carried out by observed hydrogeology, tides,waves and sediment. The numerical results are compared with available observations. Satisfactory agreements are achieved. This coupling model is then applied to the Dongfang 1-1 Gas Field area to quantitatively predict the movement and evolution of submarine sand ridges and sand waves. As a result, it is found that the sand ridges and sand waves movement distance increases year by year, but the development trend is stable.