Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally ...Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally injected intermittently with water. This mode of injection is called water-alternating-gas (WAG). This study deals with a new immiscible water alternating gas (IWAG) EOR technique, “hot IWAG” which includes combination of thermal, solvent and sweep techniques. In the proposed method CO2 will be superheated above the reservoir temperature and instead of normal temperature water, hot water will be used. Hot CO2 and hot water will be alternatively injected into the sand packs. A laboratory test was conducted on the fractured and conventional sand packs. Slugs of water and CO2 with a low and constant rate were injected into the sand packs alternatively; slug size was 0.05 PV. Recovery from each sand pack was monitored and after that hot water and hot CO2 were injected alternatively under the same conditions and increased oil recovery from each sand pack and breakthrough were measured. Experimental results showed that the injection of hot WAG could significantly recover residual oil after WAG injection in conventional and fractured sand packs.展开更多
The phenomenon of multiphase flow in porous media is confronted in various fields of science and industrial applications. Owing to the complicated porous structure, the flow mechanisms are still not completely resolve...The phenomenon of multiphase flow in porous media is confronted in various fields of science and industrial applications. Owing to the complicated porous structure, the flow mechanisms are still not completely resolved. A critical and fundamental question is the variation of pore structure and REV sizes among different types of porous media. In this study, a total of 22 porous samples were employed to systematically evaluate the pore-based architecture and REV sizes based on X-ray CT image analysis and pore network modelling. It is found that the irregular grain shapes give rise to large specific areas,narrow and thin throats in identical sand packs. The packs with more types of sands, or composited by the sands with larger difference in diameter, have larger specific area, smaller tortuosity and pore spaces.Based on the REV measurement through porosity solely, the REV sizes of sand packs are generally in the order of magnitude of 10^(-2) m L, while it is at least one order of magnitude smaller in rock cores. Our result indicates that the combination of porosity and Euler number is an effective indicator to get the REV sizes of porous samples.展开更多
Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the me...Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life.展开更多
In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible ...In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible extrusion technology was put forward. The theory, optimization algorithm and technology for sand mold nearnet forming were studied. Experimental results show that the sand mold forming efficiency can be increased by 34%, and the molding sand can be reduced by 44%. The method for near-net forming of a sand mold with digital flexible extrusion technology can effectively promote the application of digital patternless casting technology in the mass production of castings and thus greatly improves the efficiency and automation of sand mold manufacturing.展开更多
文摘Gas injection is the second largest enhanced oil recovery process, next only to the thermal method used in heavy oil fields. To increase the extent of the reservoir contacted by the injected gas, the gas is generally injected intermittently with water. This mode of injection is called water-alternating-gas (WAG). This study deals with a new immiscible water alternating gas (IWAG) EOR technique, “hot IWAG” which includes combination of thermal, solvent and sweep techniques. In the proposed method CO2 will be superheated above the reservoir temperature and instead of normal temperature water, hot water will be used. Hot CO2 and hot water will be alternatively injected into the sand packs. A laboratory test was conducted on the fractured and conventional sand packs. Slugs of water and CO2 with a low and constant rate were injected into the sand packs alternatively; slug size was 0.05 PV. Recovery from each sand pack was monitored and after that hot water and hot CO2 were injected alternatively under the same conditions and increased oil recovery from each sand pack and breakthrough were measured. Experimental results showed that the injection of hot WAG could significantly recover residual oil after WAG injection in conventional and fractured sand packs.
基金supported by National Natural Science Foundation of China (Grant No. 52106213, 51876015)Shanxi Scholarship Council of China (2020-116)+1 种基金supported by the Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education (LOEC-201903)the Science Foundation of North University of China (XJJ201907)。
文摘The phenomenon of multiphase flow in porous media is confronted in various fields of science and industrial applications. Owing to the complicated porous structure, the flow mechanisms are still not completely resolved. A critical and fundamental question is the variation of pore structure and REV sizes among different types of porous media. In this study, a total of 22 porous samples were employed to systematically evaluate the pore-based architecture and REV sizes based on X-ray CT image analysis and pore network modelling. It is found that the irregular grain shapes give rise to large specific areas,narrow and thin throats in identical sand packs. The packs with more types of sands, or composited by the sands with larger difference in diameter, have larger specific area, smaller tortuosity and pore spaces.Based on the REV measurement through porosity solely, the REV sizes of sand packs are generally in the order of magnitude of 10^(-2) m L, while it is at least one order of magnitude smaller in rock cores. Our result indicates that the combination of porosity and Euler number is an effective indicator to get the REV sizes of porous samples.
基金Supported by the National Natural Science Foundation of China(51774307).
文摘Series of experiments were performed to simulate the invasion of formation sand into and the plugging process of gravel-pack at different viscosities and flowing rates of fluid.Two types of formation sands with the medium size of 0.10 mm and 0.16 mm and the quartz sand and ceramsite of 0.6-1.2 mm were used in the experiments.A new viscosity-velocity index(the product of fluid viscosity and velocity)was put forward to characterize the influencing mechanism and law of physical property and flow condition of formation fluid on gravel-pack plugging,and a new method to optimize the production rate of wells controlling sand production with gravel-packing was proposed.The results show that the permeability of formation sand invaded zone and final permeability of plugged gravel-pack have negative correlations with viscosity and flow velocity of fluid,the higher the flow velocity and viscosity,the lower the permeability of formation sand invaded zone and final permeability of plugged gravel-pack will be.The flow velocity and viscosity of fluid are key factors affecting plugging degree of the gravel zone.The viscosity-velocity index(v-v index)can reflect the flow characteristics of fluid very well and make it easier to analyze the plugging mechanism of gravel zone.For different combinations of fluid viscosity and flow velocity,if the v-v index is the same or close,their impact on the final gravel permeability would be the same or close.With the increase of the v-v index,the permeability of plugged gravel zone decreases first,then the reduction rate slows down till the permeability stabilizes.By optimizing production and increasing production step by step,the optimal working scheme for sand-control well can reduce the damage to gravel-pack zone permeability caused by sand-carrying fluid effectively,and increase well productivity and extend the sand control life.
基金financially supported by the National Science Foundation for Distinguished Young Scholars of China(Grant No.51525503)
文摘In order to further improve the precision forming efficiency of a sand mold digital patternless casting and reduce the amount of sand mold cutting, a method for near-net forming of the sand mold with digital flexible extrusion technology was put forward. The theory, optimization algorithm and technology for sand mold nearnet forming were studied. Experimental results show that the sand mold forming efficiency can be increased by 34%, and the molding sand can be reduced by 44%. The method for near-net forming of a sand mold with digital flexible extrusion technology can effectively promote the application of digital patternless casting technology in the mass production of castings and thus greatly improves the efficiency and automation of sand mold manufacturing.