The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,cl...The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems.However,the trade-offs and synergies between ecosystem services(ESs)have not been thoroughly examined.This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs.Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)and Revised Wind Erosion Equation(RWEQ)using land use/land cover(LULC),climate,vegetation,soil,and hydrological data,we quantified the spatiotemporal changes in the five principal ESs(carbon storage,water yield,food production,wind and sand prevention,and habitat quality)of the watershed from 1995 to 2020.Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs.The findings reveal that water yield,carbon storage,and habitat quality exhibited relatively high levels in the upstream,while food production and wind and sand prevention dominated the midstream and downstream,respectively.Furthermore,carbon storage,food production,wind and sand prevention,and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020.Specifically,carbon storage,wind and sand prevention,and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream.Food production in the midstream showed a continuously increasing trend during the study period.Trade-off relationships were identified between water yield and wind and sand prevention,water yield and carbon storage,food production and water yield,and habitat quality and wind and sand prevention.Prominent temporal and spatial synergistic relationships were observed between different ESs,notably between carbon storage and habitat quality,carbon storage and food production,food production and wind and sand prevention,and food production and habitat quality.Water resources emerged as a decisive factor for the sustainable development of the basin,thus highlighting the intricate trade-offs and synergies between water yield and the other four services,particularly the relationship with food production,which warrants further attention.This research is of great significance for the protection and sustainable development of river basins in arid areas.展开更多
A V-shaped nylon net fence installed in 1990 on top of the Mogao Grottoes is shown to be effectively resisting aeolian sand damage to the grottoes. The structure guides and causes deposition of sand from westerly wind...A V-shaped nylon net fence installed in 1990 on top of the Mogao Grottoes is shown to be effectively resisting aeolian sand damage to the grottoes. The structure guides and causes deposition of sand from westerly wind (the primary hard wind), but to some extent hinders the inverse function of easterly wind carrying sand away from the grottoes toward Mount Mingsha. The gobi side by the fence experiences higher wind speed, so that on which are easily formed undercutting pits, and the deposited sands on it generally form double-peak structures due to abundant sand sources. If the earth surface characteristics in gobi areas by both sides of the fence are quite varied, the erosion and deposition features of the accumulating sand section are similar in different seasons; however, if the earth surface characteristics are similar, the features become irregular in different seasons. Sand depositions with long slope feet are formed along the south and north sides of V-shaped nylon net fence. Disrupted by strong westerly wind and northwesterly wind, sand accumulations by north of the fence are in form of single peaks. Although the operation duration of the V-shaped nylon net fence has exceeded its design life (10 years), our observations indicate that it is still effective in reducing wind-driven sand damages to the Mogao Grottoes, so it should not be withdrawn.展开更多
Based on years of production practice experience, the technical measures for wind prevention and sand fixation were put forward from the causes and evolu-tion laws of sand wind, which were of great realistic significa...Based on years of production practice experience, the technical measures for wind prevention and sand fixation were put forward from the causes and evolu-tion laws of sand wind, which were of great realistic significance to improve the sand prevention work in Shandong.展开更多
基金financially supported by the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2022D01C77)the PhD Programs Foundation of Xinjiang University(BS202105).
文摘The Keriya River Basin is located in an extremely arid climate zone on the southern edge of the Tarim Basin of Northwest China,exhibiting typical mountain-oasis-desert distribution characteristics.In recent decades,climate change and human activities have exerted significant impacts on the service functions of watershed ecosystems.However,the trade-offs and synergies between ecosystem services(ESs)have not been thoroughly examined.This study aims to reveal the spatiotemporal changes in ESs within the Keriya River Basin from 1995 to 2020 as well as the trade-offs and synergies between ESs.Leveraging the Integrated Valuation of Ecosystem Services and Trade-offs(InVEST)and Revised Wind Erosion Equation(RWEQ)using land use/land cover(LULC),climate,vegetation,soil,and hydrological data,we quantified the spatiotemporal changes in the five principal ESs(carbon storage,water yield,food production,wind and sand prevention,and habitat quality)of the watershed from 1995 to 2020.Spearman correlation coefficients were used to analyze the trade-offs and synergies between ES pairs.The findings reveal that water yield,carbon storage,and habitat quality exhibited relatively high levels in the upstream,while food production and wind and sand prevention dominated the midstream and downstream,respectively.Furthermore,carbon storage,food production,wind and sand prevention,and habitat quality demonstrated an increase at the watershed scale while water yield exhibited a decline from 1995 to 2020.Specifically,carbon storage,wind and sand prevention,and habitat quality presented an upward trend in the upstream but downward trend in the midstream and downstream.Food production in the midstream showed a continuously increasing trend during the study period.Trade-off relationships were identified between water yield and wind and sand prevention,water yield and carbon storage,food production and water yield,and habitat quality and wind and sand prevention.Prominent temporal and spatial synergistic relationships were observed between different ESs,notably between carbon storage and habitat quality,carbon storage and food production,food production and wind and sand prevention,and food production and habitat quality.Water resources emerged as a decisive factor for the sustainable development of the basin,thus highlighting the intricate trade-offs and synergies between water yield and the other four services,particularly the relationship with food production,which warrants further attention.This research is of great significance for the protection and sustainable development of river basins in arid areas.
基金supported jointly by the National Science and Technology Support Program (2012BAC08B07)the Natural Science Foundation of China (Nos. 2009BAC54B01-1 and 40930741)the Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-EW-313)
文摘A V-shaped nylon net fence installed in 1990 on top of the Mogao Grottoes is shown to be effectively resisting aeolian sand damage to the grottoes. The structure guides and causes deposition of sand from westerly wind (the primary hard wind), but to some extent hinders the inverse function of easterly wind carrying sand away from the grottoes toward Mount Mingsha. The gobi side by the fence experiences higher wind speed, so that on which are easily formed undercutting pits, and the deposited sands on it generally form double-peak structures due to abundant sand sources. If the earth surface characteristics in gobi areas by both sides of the fence are quite varied, the erosion and deposition features of the accumulating sand section are similar in different seasons; however, if the earth surface characteristics are similar, the features become irregular in different seasons. Sand depositions with long slope feet are formed along the south and north sides of V-shaped nylon net fence. Disrupted by strong westerly wind and northwesterly wind, sand accumulations by north of the fence are in form of single peaks. Although the operation duration of the V-shaped nylon net fence has exceeded its design life (10 years), our observations indicate that it is still effective in reducing wind-driven sand damages to the Mogao Grottoes, so it should not be withdrawn.
文摘Based on years of production practice experience, the technical measures for wind prevention and sand fixation were put forward from the causes and evolu-tion laws of sand wind, which were of great realistic significance to improve the sand prevention work in Shandong.