This paper presents the environmental history and its responses to palaeoclimatic changes since the start of the Holocene in the eastern portion of the desert belt(sand seas and sandy lands) in northern China by compa...This paper presents the environmental history and its responses to palaeoclimatic changes since the start of the Holocene in the eastern portion of the desert belt(sand seas and sandy lands) in northern China by comparing the aeolian sandpalaeosol sequences and their palaeoclimatic proxies. The optically stimulated luminescence(OSL) ages of the aeolian sandpalaeosol sedimentary sequences and a series of palaeoenvironmental proxies show that:(1) The large-scale dune landscape currently in the Kubuqi Sand Sea was formed during the Holocene in general;and the palaeosol was generally developed during the period of 4–2 ka, indicating conditions favorable for vegetation growth, soil development, and organic carbon accumulation due to increased precipitation or effective moisture and weakened aeolian activities;the large-scale expansion of dunes in the recent 2 ka is closely linked to human activities. The variable discharge of the Yellow River with diversions for irrigation may have resulted in a more consistent supply of aeolian particles for dune field expansion.(2) The dune landscape of the Hunshandake Sandy Land was likely formed around 12 ka, and before this, the western part of the Hunshandake Sandy Land would have been covered by a single large lake;it was obviously wetter than today in the sandy land during the period of 9.6–3 ka and the palaeosols were developed at the same time. But the aeolian activities have not been completely dormant in this long-lasting wetter epoch;because the Holocene wetter period was likely time-transgressive across the region.(3) The palaeosol of the Hulunbuir Sandy Land began to develop as early as 14.5 ka, probably continuing until the last 2 ka. The palaeosol development of various dune fields in the eastern portion of the desert belt(sand seas and sandy lands) in northern China is spatially heterogeneous, and even the palaeosol development time in different locations within each sandy land is inconsistent. During the middle Holocene(especially the 7.5–3.5 ka), all the sandy lands were stabilized in general and the intensity of aeolian activities was significantly weakened. The number of palaeoenvironmental records in the eastern portion of the desert belt(sand seas and sandy lands) in northern China has increased rapidly in the past decade, but the amount of published data still does not match the vast extent of the dune fields. It does require much more in-depth palaeoenvironmental studies for a full understanding of the relationship between aeolian activities and climate change in northern China.展开更多
The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An exp...The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC.展开更多
Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The result...Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The results show that the significant wave height (H1/3) varies from 0.15 to 2.22 m with the average of 0.59 m and the mean wave period (Tmean) varies from 2.06 to 6.82 s with the average of 3.71 s. The percentage of single peak in the wave spectra is 88.6 during the measurement period, in which 36.3% of the waves are pure wind waves and the rest are young swells. The percentage with the significant wave height larger than 1 m is 12.4. The dominant wave directions in the study area are WNW, W, ESE, E and NW. The relationships among the characteristic wave heights, the characteristic wave periods, and the wave spectral parameters are identified. It is found that the tentative spectral model is suitable for the quantitative description of the wave spectrum in the study area, while the run lengths of the wave group estimated from the measured data are generally larger than those in other sea areas.展开更多
According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathy...According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.展开更多
The Jianggang Harbour-centered radial sand ridge(RSR) is the largest sand body in the Yellow Sea. Its formation and evolution are of interest for scientists of various fields; however, the sediment provenance is uncer...The Jianggang Harbour-centered radial sand ridge(RSR) is the largest sand body in the Yellow Sea. Its formation and evolution are of interest for scientists of various fields; however, the sediment provenance is uncertain. In this study, rare earth element(REE) geochemical compositions of the RSR sediments together with their potential sources are investigated to identify the provenance of the RSR sediments. The typical parameters((La/Yb)_N,(La/Sm)_N and(Gd/Yb)_N) as well as the upper continental crust-normalized patterns of REEs can only be associated with source rocks, and thus can be used as effective tracers for the origin and sources of sediments. However, the REE contents of sediments are affected by many factors, such as particle sorting and chemical weathering. Onshore RSR sediments are different in REE geochemical composition from offshore RSR sediments to some extent, suggesting that not all of the offshore RSR sediments have the same sources as the onshore RSR sediments. Meanwhile, the sediments adjacent to the northeast of Cheju Island and at Lian Island near the Lianyun Harbour were not the source of the RSR sediments due to their distinctive REE patterns, dEu,(La/Yb)_N,(Gd/Yb)_N and(La/Sm)_N. The Korean river sediments could be dispersed to the Jiangsu Coast slightly impacting the fine fractions of the RSR sediments, particularly the offshore RSR sediments. Additionally, geochemical comparisons show that the modern Yellow River was responsible for the onshore RSR sediments, whereas the sediment loads from the Yangtze River could serve as a major contributor to the RSR, particularly the offshore RSR. In addition, the offshore RSR could also be partly fed by an unknown source due to some high values of(La/Yb)_N,(La/Sm)_N and La contents differing from those of the Chinese and Korean river sediments.展开更多
The results of a study on the key technology of using shell sand, a kind of sea sand, as backfill for sea reclamation are described briefly. Iaboratory tests show that the physical and mechanical properties of shell s...The results of a study on the key technology of using shell sand, a kind of sea sand, as backfill for sea reclamation are described briefly. Iaboratory tests show that the physical and mechanical properties of shell sand are as good as normal quartz sand. Based on the chemical test and durability test of shell sand it could be concluded that the influence of corrosion of shell sand by acid rain and sea water might be ignored in the evaluation of the safety and durability of the engineering project. The results of field improvement tests show that the bearing capacity of shell sand backfill foundation is more than 200 kPa after vibmflotation improvement or dynamic compaction improvement. The shell sand is a good backfill material for sea reclamation.展开更多
基金supported by the CAS Strategic Priority Research Program (Grant No. XDA05120502)the National Natural Science Foundation of China (Grant No. 41672182)
文摘This paper presents the environmental history and its responses to palaeoclimatic changes since the start of the Holocene in the eastern portion of the desert belt(sand seas and sandy lands) in northern China by comparing the aeolian sandpalaeosol sequences and their palaeoclimatic proxies. The optically stimulated luminescence(OSL) ages of the aeolian sandpalaeosol sedimentary sequences and a series of palaeoenvironmental proxies show that:(1) The large-scale dune landscape currently in the Kubuqi Sand Sea was formed during the Holocene in general;and the palaeosol was generally developed during the period of 4–2 ka, indicating conditions favorable for vegetation growth, soil development, and organic carbon accumulation due to increased precipitation or effective moisture and weakened aeolian activities;the large-scale expansion of dunes in the recent 2 ka is closely linked to human activities. The variable discharge of the Yellow River with diversions for irrigation may have resulted in a more consistent supply of aeolian particles for dune field expansion.(2) The dune landscape of the Hunshandake Sandy Land was likely formed around 12 ka, and before this, the western part of the Hunshandake Sandy Land would have been covered by a single large lake;it was obviously wetter than today in the sandy land during the period of 9.6–3 ka and the palaeosols were developed at the same time. But the aeolian activities have not been completely dormant in this long-lasting wetter epoch;because the Holocene wetter period was likely time-transgressive across the region.(3) The palaeosol of the Hulunbuir Sandy Land began to develop as early as 14.5 ka, probably continuing until the last 2 ka. The palaeosol development of various dune fields in the eastern portion of the desert belt(sand seas and sandy lands) in northern China is spatially heterogeneous, and even the palaeosol development time in different locations within each sandy land is inconsistent. During the middle Holocene(especially the 7.5–3.5 ka), all the sandy lands were stabilized in general and the intensity of aeolian activities was significantly weakened. The number of palaeoenvironmental records in the eastern portion of the desert belt(sand seas and sandy lands) in northern China has increased rapidly in the past decade, but the amount of published data still does not match the vast extent of the dune fields. It does require much more in-depth palaeoenvironmental studies for a full understanding of the relationship between aeolian activities and climate change in northern China.
基金supported by the National Natural Science Foundation of China(Nos.51408346,51978389)the China Postdoctoral Science Foundation Funded Project(No.2015M572584,No.2016T0914)+3 种基金the Shandong Provincial Natural Science Foundation(No.ZR2019PEE044)the Opening Foundation of Shandong Key Laboratory of Civil Engineering Disaster Prevention and Mitigation(CDPM2019KF12)the Systematic Project of Guangxi Key Laboratory of Disaster Prevention and Structural Safety(2019ZDK035)the Shandong University of Science and Technology(SDKDYC190358).
文摘The mechanical properties of modified sea water sea sand coral concrete(SWSSCC)under axial compression were experimentally studied.Two different parameters were considered in this test:types of cement and fiber.An experimental campaign was developed involving uniaxial compression tests and the use of digital image correlation(DIC)method to analyze the strain distribution and crack propagation of specimen.Test results indicated that the compressive strength and elastic modulus of SWSSCC were improved by adding stainless steel fibers(SSF),while polypropylene fibers(PF)enhanced the SWSSCC peak deformation.It was found that the elastic modulus and strength of SWSSCC using ordinary Portland cement(OPC)were higher compared to specimen with low alkalinity sulphoaluminate cement(LAS).Typical strain distribution changed with the variation of fiber types.The propagation and characteristics of cracks in SWSSCC containing PF were similar to those of cracks in SWSSCC.However,the propagation of cracks and the development of plastic deformation in SWSSCC were effectively hindered by adopting SSF.Finally,an analytical stress-strain expression of specimen considering the influences of fibers was established.The obtained results would provide a basis for the application of SWSSCC.
文摘Based on one-year wave field data measured at the south part of the radial sand ridges of the Southern Yellow Sea, the wave statistical characteristics, wave spectrum and wave group properties are analyzed. The results show that the significant wave height (H1/3) varies from 0.15 to 2.22 m with the average of 0.59 m and the mean wave period (Tmean) varies from 2.06 to 6.82 s with the average of 3.71 s. The percentage of single peak in the wave spectra is 88.6 during the measurement period, in which 36.3% of the waves are pure wind waves and the rest are young swells. The percentage with the significant wave height larger than 1 m is 12.4. The dominant wave directions in the study area are WNW, W, ESE, E and NW. The relationships among the characteristic wave heights, the characteristic wave periods, and the wave spectral parameters are identified. It is found that the tentative spectral model is suitable for the quantitative description of the wave spectrum in the study area, while the run lengths of the wave group estimated from the measured data are generally larger than those in other sea areas.
基金supported by the Ph.D. Programs Foundation of the Ministry of Education of China (Grant No.20070294026)
文摘According to a deformed mild-slope equation derived by Guang-wen Hong and an enhanced numerical method, a wave refraction-diffraction nonlinear mathematical model that takes tidal level change and the high-order bathymetry factor into account has been developed. The deformed mild-slope equation is used to eliminate the restriction of wave length on calculation steps. Using the hard disk to record data during the calculation process, the enhanced numerical method can save computer memory space to a certain extent, so that a large-scale sea area can be calculated with high-resolution grids. This model was applied to wave field integral calculation over a radial sand ridge field in the South Yellow Sea. The results demonstrate some features of the wave field: (1) the wave-height contour lines are arc-shaped near the shore; (2) waves break many times when they propagate toward the shore; (3) wave field characteristics on the northern and southern sides of Huangshayang are different; and (4) the characteristics of wave distribution match the terrain features. The application of this model in the region of the radial sand ridge field suggests that it is a feasible way to analyze wave refraction-diffraction effects under natural sea conditions.
基金Under the auspices of National Key Technology Research and Development Program(No.2012BAB03B01)National Natural Science Foundation of China(No.41273015,51278172,51478167)
文摘The Jianggang Harbour-centered radial sand ridge(RSR) is the largest sand body in the Yellow Sea. Its formation and evolution are of interest for scientists of various fields; however, the sediment provenance is uncertain. In this study, rare earth element(REE) geochemical compositions of the RSR sediments together with their potential sources are investigated to identify the provenance of the RSR sediments. The typical parameters((La/Yb)_N,(La/Sm)_N and(Gd/Yb)_N) as well as the upper continental crust-normalized patterns of REEs can only be associated with source rocks, and thus can be used as effective tracers for the origin and sources of sediments. However, the REE contents of sediments are affected by many factors, such as particle sorting and chemical weathering. Onshore RSR sediments are different in REE geochemical composition from offshore RSR sediments to some extent, suggesting that not all of the offshore RSR sediments have the same sources as the onshore RSR sediments. Meanwhile, the sediments adjacent to the northeast of Cheju Island and at Lian Island near the Lianyun Harbour were not the source of the RSR sediments due to their distinctive REE patterns, dEu,(La/Yb)_N,(Gd/Yb)_N and(La/Sm)_N. The Korean river sediments could be dispersed to the Jiangsu Coast slightly impacting the fine fractions of the RSR sediments, particularly the offshore RSR sediments. Additionally, geochemical comparisons show that the modern Yellow River was responsible for the onshore RSR sediments, whereas the sediment loads from the Yangtze River could serve as a major contributor to the RSR, particularly the offshore RSR. In addition, the offshore RSR could also be partly fed by an unknown source due to some high values of(La/Yb)_N,(La/Sm)_N and La contents differing from those of the Chinese and Korean river sediments.
基金This work was financially supported by CNOOC(Grant No.Z2004SLFJ-TS26)
文摘The results of a study on the key technology of using shell sand, a kind of sea sand, as backfill for sea reclamation are described briefly. Iaboratory tests show that the physical and mechanical properties of shell sand are as good as normal quartz sand. Based on the chemical test and durability test of shell sand it could be concluded that the influence of corrosion of shell sand by acid rain and sea water might be ignored in the evaluation of the safety and durability of the engineering project. The results of field improvement tests show that the bearing capacity of shell sand backfill foundation is more than 200 kPa after vibmflotation improvement or dynamic compaction improvement. The shell sand is a good backfill material for sea reclamation.