A DTM map of the study area in the Taiwan Shoal was drawn based on precise and high- density data acquired in a field survey by a multi-beam sounding system (R2Sonic2024). We identified sand waves in the study area ...A DTM map of the study area in the Taiwan Shoal was drawn based on precise and high- density data acquired in a field survey by a multi-beam sounding system (R2Sonic2024). We identified sand waves in the study area at water depths of 13.89-49.12 m; the main sand waves had heights of 5- 25 m, lengths of 0.1-2.0 km, and crest lines 0.1-6.5 km long. The spatial distribution of the sand waves on the seabed is dense in the north and sparse in the south and the directions range between 50°-80° and 90°-135°. Between the main sand waves, secondary sand waves develop with heights of 0.1-5.0 m and lengths of 10-100 m, which are difficult to detect by satellite remote sensing. By comparing the evolution structures of the secondary and main sand waves, we identified three evolution modes of the secondary sand waves: parallel, oblique, and divergent modes according to the relative crest directions. Suitable water depth, reciprocating current speeds between 40 and 100 cm/s, and abundant sediment supply create favorable conditions for the formation of linear sand waves. Comparing the DTM maps and profiles of the June 2012 and June 2013 surveys of the same area, we found that the shape and morphology of the sand waves remained mostly unchanged under normal hydrodynamic conditions.展开更多
The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data wer...The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.展开更多
Taiwan Shoal sediments are well sorted and rounded medium-coarse sands eontaining a large amount of shell and beach rock fragments and basalt gravels, and are of deltaic, coastal and eolian origin. Underwater sand wav...Taiwan Shoal sediments are well sorted and rounded medium-coarse sands eontaining a large amount of shell and beach rock fragments and basalt gravels, and are of deltaic, coastal and eolian origin. Underwater sand waves are formed by the combined tidal currents and are remolded by storm waves.展开更多
基金Funding was provided by the Marine Public Special Project (201105001 and 201205004)the Natural Science Foundation (China project, 41276058)
文摘A DTM map of the study area in the Taiwan Shoal was drawn based on precise and high- density data acquired in a field survey by a multi-beam sounding system (R2Sonic2024). We identified sand waves in the study area at water depths of 13.89-49.12 m; the main sand waves had heights of 5- 25 m, lengths of 0.1-2.0 km, and crest lines 0.1-6.5 km long. The spatial distribution of the sand waves on the seabed is dense in the north and sparse in the south and the directions range between 50°-80° and 90°-135°. Between the main sand waves, secondary sand waves develop with heights of 0.1-5.0 m and lengths of 10-100 m, which are difficult to detect by satellite remote sensing. By comparing the evolution structures of the secondary and main sand waves, we identified three evolution modes of the secondary sand waves: parallel, oblique, and divergent modes according to the relative crest directions. Suitable water depth, reciprocating current speeds between 40 and 100 cm/s, and abundant sediment supply create favorable conditions for the formation of linear sand waves. Comparing the DTM maps and profiles of the June 2012 and June 2013 surveys of the same area, we found that the shape and morphology of the sand waves remained mostly unchanged under normal hydrodynamic conditions.
基金Scientific Research Foundation of Third Institute of Oceanography, SOA under contract No. 2009004the Ocean Public Welfare Scientific Research Project under contract Nos 201005029 and 201105001
文摘The Taiwan Shoal is the convex terrain in the southern Taiwan Strait, the largest strait in China. In 2006 and 2007, 21 samples and more than 200-km sub-bottom data as well as 80-km near shore side-scan sonar data were gotten, which gave an initial image of the boundaries of the Taiwan Shoal and revealed the internal structure of the sand waves in this area. The results showed that the major component of the sediment samples was sand, and sand waves occurred everywhere in this area, which closely followed the range of the Taiwan Shoal as we know. The western boundary of the Taiwan Shoal thus reaches the 30 m isobaths near the shore, and as a result, its area potentially covers approximately 12 800-14 770 km2. The sand waves have different shapes under the complex ocean dynamics, and the height of sand waves in the near shore is usually smaller than that in the Taiwan Shoal. The number of sand waves ranged from 1-5 per kilometer, with more waves in the isobath-intensive area, suggesting the importance of topography for the formation of sand waves. The stratigraphic structure under the seabed has parallel bedding or cross bedding, and large dipping groove bedding can be seen locally in different parts, which may be the result of terrestrial deposition since the Late Pleistocene.
文摘Taiwan Shoal sediments are well sorted and rounded medium-coarse sands eontaining a large amount of shell and beach rock fragments and basalt gravels, and are of deltaic, coastal and eolian origin. Underwater sand waves are formed by the combined tidal currents and are remolded by storm waves.