The state of clean sand was mainly dependent on its void ratio(density)and confining stress that greatly influenced the mechanical behavior(compression,dilatancy and liquefaction)of clean sand.Confirming whether the c...The state of clean sand was mainly dependent on its void ratio(density)and confining stress that greatly influenced the mechanical behavior(compression,dilatancy and liquefaction)of clean sand.Confirming whether the confining stress was a state variable of sand required precise element tests at different confining stress,especially the tests under very low confining stress whose test data were very limited.In this study,static-dynamic characteristics of clean sand was comprehensively investigated by a unified test program under low and normal confining stress ranging from 5 to 98 kPa,under monotonic/cyclic and drained/undrained conditions,together with the literature available data under confining stress of 1.0 to 3.0 MPa.For monotonic loading tests,the contraction/dilation phase transition was observed for loose sand at low confining stress,and dilatancy angles were stress-dependent.In addition,the liquefaction resistance was observed to increase with reducing of confining stress,and the axial strain varied from compressive to dilative when confining stress increased.Special attention was also paid to the enhancement effect of membrane,and it was observed that its influence on the test results was limited.In addition,the experimental results were proved reliable by reproducibility.展开更多
By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean ...By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.展开更多
基金Projects(51908288,41627801)supported by the National Natural Science Foundation of China。
文摘The state of clean sand was mainly dependent on its void ratio(density)and confining stress that greatly influenced the mechanical behavior(compression,dilatancy and liquefaction)of clean sand.Confirming whether the confining stress was a state variable of sand required precise element tests at different confining stress,especially the tests under very low confining stress whose test data were very limited.In this study,static-dynamic characteristics of clean sand was comprehensively investigated by a unified test program under low and normal confining stress ranging from 5 to 98 kPa,under monotonic/cyclic and drained/undrained conditions,together with the literature available data under confining stress of 1.0 to 3.0 MPa.For monotonic loading tests,the contraction/dilation phase transition was observed for loose sand at low confining stress,and dilatancy angles were stress-dependent.In addition,the liquefaction resistance was observed to increase with reducing of confining stress,and the axial strain varied from compressive to dilative when confining stress increased.Special attention was also paid to the enhancement effect of membrane,and it was observed that its influence on the test results was limited.In addition,the experimental results were proved reliable by reproducibility.
基金the National Natural Science Foundation of China (Nos. 50579006 and 50639010)
文摘By using the soil static and dynamic universal triaxial and torsional shear apparatus, a series of combined cyclic shear tests are performed to simulate the rotation in the principal stress direction induced by ocean wave. The tests include the cyclic preloading tests and liquefaction tests in the second loading on saturated loose sand with a relative density of 30%. The all tests are consolidated under isotropic condition. The effect of the cyclic preloading on the resistance to liquefaction of saturated loose sands under the condition of continuous rotation in the principal stress direction is investigated. Experimental data indicate that the void ratio of saturated sands has a negligible reduction after cyclic preloading. With the increase of the intensity of cyclic preloading (in the amplitude and in the number of cycles), the resistance to liquefaction in the second loading is increased continuously under the condition that the liquefaction does not occur during the cyclic preloading. The reason is that the construction of more stable structure due to the uniformity of the void and the better interlocking of the particles when the cyclic preloading is applied to the saturated sand.