Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate...Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate. Not much data is available on the soil stabilization capacity of plants. This study was conducted to investigate the wind-induced sand displacement around plants in relation to their biomass. Sand displacement is examined in relation to the biomass allocation pattern of three different plant species. A new method was developed to experimentally investigate plant sand-binding capacity. The relationship between sand displacement and plant biomass was not linear. Apart from the amount of biomass, species-specific plant characters like the biomass allocation pattern and plant structure may be very important in determining the sand-binding capacity.展开更多
Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The...Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.展开更多
The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely...The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.展开更多
Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies...Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.展开更多
Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou...Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas.展开更多
Deserts are sensitive to environmental changes caused by human interference and are prone to degradation.Revegetation can promote the reversal of desertification and the subsequent formation of fixed sand.However,the ...Deserts are sensitive to environmental changes caused by human interference and are prone to degradation.Revegetation can promote the reversal of desertification and the subsequent formation of fixed sand.However,the effects of grazing,which can cause the ground-surface conditions of fixed sand to further deteriorate and result in re-desertification,on the greenhouse gas(GHG)fluxes from soils remain unknown.Herein,we investigated GHG fluxes in the Hobq Desert,Inner Mongolia Autonomous Region of China,at the mobile(desertified),fixed(vegetated),and grazed(re-desertified)sites from January 2018 to December 2019.We analyzed the response mechanism of GHG fluxes to micrometeorological factors and the variation in global warming potential(GWP).CO_(2)was emitted at an average rate of 4.2,3.7,and 1.1 mmol/(m^(2)•h)and N_(2)O was emitted at an average rate of 0.19,0.15,and 0.09μmol/(m^(2)•h)at the grazed,fixed,and mobile sites,respectively.Mean CH_(4) consumption was as follows:fixed site(2.9μmol/(m^(2)•h))>grazed site(2.7μmol/(m^(2)•h))>mobile site(1.1μmol/(m^(2)•h)).GHG fluxes varied seasonally,and soil temperature(10 cm)and soil water content(30 cm)were the key micrometeorological factors affecting the fluxes.The changes in the plant and soil characteristics caused by grazing resulted in increased soil CO_(2)and N_(2)O emissions and decreased CH_(4) absorption.Grazing also significantly increased the GWP of the soil(P<0.05).This study demonstrates that grazing on revegetated sandy soil can cause re-desertification and significantly increase soil carbon and nitrogen leakage.These findings could be used to formulate informed policies on the management and utilization of desert ecosystems.展开更多
Cape Dyer (DYE-M), located on the easternmost point of Baffin Island, is a former DEW line radar station built in 1956-57 which was upgraded in 1993 as part of the current North Warning System. Environmental studies i...Cape Dyer (DYE-M), located on the easternmost point of Baffin Island, is a former DEW line radar station built in 1956-57 which was upgraded in 1993 as part of the current North Warning System. Environmental studies in the late 1990s and early 2000s determined that extensive soil contamination existed across the site, and excavation of six landfills and subsequent reshaping of the area in 2008 disturbed approximately 19,700 m2. A four-year pilot project was conducted between 2009 and 2012 to investigate feasibility of, and determine methods to, accelerate revegetation of the disturbed area through assisted seed dispersal of native and non native species and selective transplantation of slow-growing shrub species. Prior to revegetation efforts, plant surveys conducted in July 2009 determined that 15 species were present in the undisturbed areas, of which Salix arctica (~11%), Vaccinium uliginosum L. (~8%), and Empetrum nigrum L. (~5%) were the predominant species. A total of 14 species (three new) were observed growing on the disturbed areas between 2010 and 2012. The majority of Lolium multiflorum (annual ryegrass) seeds planted as a nurse species in 2009 grew in 2010, but most were stunted and only observed in furrows or sheltered areas at a low density. Salix arctica Pall. (willow) cuttings planted in “islands” of 20-30 cuttings in fall 2009 had a three-year survival rate of 82%, while a second set of cuttings planted in fall 2011 had a one-year survival rate of 93%. Visual observations indicate that patches of new vegetation are becoming more predominant on the disturbed area, especially around the willow islands, indicating the importance of microtopography for successful reclamation in arctic environments. Monitoring over ten or more years will be required to determine the long term success of this project.展开更多
Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the h...Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the hypothesis of speedy revegetation. Root colonization and spore density of arbuscular mycorrhizae (AM) were lowest in plants seeded directly on slopes of the overburden (coal mine dump). At flat surfaces, the mycorrhizal colonization in plant species was higher than that observed at slopes. In other revegetation models, i.e., tree monoculture, tree monoculture + crop species (agroforestry), and two strata plantations (combination of different plant species), maximum AM colonization was recorded for tree species grown along with crop species. This was followed by two strata plantations and tree monoculture. In two strata plantations three categories of AM associations were recognized: 1) every plant in the combination, possessed high mycorrhizal association, 2) only one plant in the combination possessed high mycorrhizal association, and 3) none of the plants in the combination possessed high mycorrhizal association. Azadirachta indica, Pongamia pinnata, Leucaena leucocephala and Acacia catechu were most effective in catching mycorrhizae, and can be used as the effective tool in rehabilitation of the degraded ecosystems.展开更多
Soil moisture is the key link between land hydrological and ecological processes which plays an important role in the terrestrial water cycle. As extreme weather events have increased in recent years, the stochastic s...Soil moisture is the key link between land hydrological and ecological processes which plays an important role in the terrestrial water cycle. As extreme weather events have increased in recent years, the stochastic simulation of soil moisture has gradually become the focus of ecohydrology research. Based on continuous monitoring of soil moisture data from 2008 to 2011, and histor- ical precipitation data from 199l to 2011, combined with the Rodriguez-Iturbe soil moisture dynamic stochastic model, soil mois- ture dynamics and its probability density fimction in a revegetated desert area was simulated. Results show that annual soil mois- ture dynamic changes of the revegetated desert area during the growing season complied with rainfall distribution; soil moisture probability presents a single-peak distribution in the plant rhizosphere layer (0-60 cm). The peak width in the 20 cm topsoil was wider than in other soils, and the distribution presented the strong fluctuations and multiple aggregates. The peak widths of 40 cm and 60 cm soil moisture probability distribution were small, which are in accordance with simulated results of the Rodri- guez-lturbe model. This confrms that the Rodriguez-Imrbe model has good applicability and can well simulate the statistical characteristics of soil moisture in an arid revegetated desert area.展开更多
为探究黄土高原植物群落生物多样性与生态系统功能的关系,本研究以黄土丘陵区不同环境条件下稳定的自然植物群落为对象,采用3个物种多样性指数(Shannon-Wiener指数、Simpson优势度指数、Pielou均匀度指数)和4个功能多样性指数(FRic功能...为探究黄土高原植物群落生物多样性与生态系统功能的关系,本研究以黄土丘陵区不同环境条件下稳定的自然植物群落为对象,采用3个物种多样性指数(Shannon-Wiener指数、Simpson优势度指数、Pielou均匀度指数)和4个功能多样性指数(FRic功能丰富度、FDiv功能趋异指数、FEve功能均匀度和FDis功能离散度),选取地上生物量(Aboveground biomass,AGB)、土壤全氮(Soil total nitrogen,STN)、土壤有机碳(Soil organic carbon,SOC)和土壤全磷(Soil total phosphorus,STP)作为生态系统功能指标,运用冗余分析和全因子回归的方法对影响生态系统功能的因素进行分析。结果表明:Shannon指数、STP随降雨量和气温递增呈现先递增后递减的趋势,FRic呈递减趋势,FDiv,AGB,SOC,STN呈递增趋势(P<0.05);年均降雨量Pa对生态系统功能的贡献值达到21.5%,功能多样性指数(FDiv,FDis,FEve)对生态系统功能的贡献值要高于物种多样性(Shannon指数),且显著影响AGB和STP(P<0.05)。综上所述,在黄土丘陵区降雨量主要影响着生态系统功能,功能多样性对生态系统功能的影响程度比物种多样性更大。本研究可为黄土高原生物多样性和生态系统功能的恢复提供理论依据。展开更多
In Kuwait, the scarcity and irregularity of rainfall, the availability of areas of sand supply and the prevalence of strong north westerly winds significantly influence the stability of the fragile ecosystem. Naturall...In Kuwait, the scarcity and irregularity of rainfall, the availability of areas of sand supply and the prevalence of strong north westerly winds significantly influence the stability of the fragile ecosystem. Naturally, grown native shrubs and trees can provide potential shelter to soil surface in desert areas. To study the environmental indicators provided by native plant and their ability to improve quality of life, the morphological properties of the vegetated nabkhas within different areas in Kuwait desert and within protected area were assessed. The vegetated dunes can trap maximum mobile sediments from 10.5 to 0.45 ton thus cost saving per plant estimated to be from 5.5 to 0.24 USD. The arrangements of the native plant from highest efficiency in absorbing carbon dioxides to the least were as follows: Nitraria retusa, Haloxylon salicornicum, Citrullus colocynthis, Tamarix aucheriana, Lycium shawii, Convolvolus oxyphyllus, Rhanterium epapposum, Panicum turgidum, Calligonum polygonoides, Astragalus spinosus, Cyperus conglomerates. The cost saving of CO_(2) per year estimated to be from 0.95 to 1,542.1 USD. The revegetation enhanced physical and chemical quality of soil and created microenvironments for the flora and fauna. The aim of this paper is to identify the environmental indicators related to native plants for the assessment of quality of life.展开更多
文摘Desertification is a process in which vegetation cover degrades followed by increased wind and water erosion. Plants adapted to moving sand conditions are able to reverse this process. They can stabilize die substrate. Not much data is available on the soil stabilization capacity of plants. This study was conducted to investigate the wind-induced sand displacement around plants in relation to their biomass. Sand displacement is examined in relation to the biomass allocation pattern of three different plant species. A new method was developed to experimentally investigate plant sand-binding capacity. The relationship between sand displacement and plant biomass was not linear. Apart from the amount of biomass, species-specific plant characters like the biomass allocation pattern and plant structure may be very important in determining the sand-binding capacity.
基金the National Natural Science Foundation of China (Nos.40461006 and 40701095) the NationalKey Basic Research Program of China (973 Program) (No.2007CB407201).
文摘Field investigations and laboratory analysis were conducted to study the characteristics of soil water-stable aggregates during vegetation rehabilitation in typical grassland soils of the hilly-gullied loess area. The relationship between water- stable aggregates and other soil properties was analyzed using canonical correlation analysis and principal component analysis. The results show that during the natural revegetation, the aggregates 〉 5 mm dominated and constituted between 50% and 80% of the total soil water-stable aggregates in most of the soil layers. The 2-5 mm aggregate class was the second main component. The mean value of water-stable aggregates 〉 5 mm within the 0-2 m soil profile under different plant communities decreased in the following order: Stipa grandis 〉 Stipa bungeana Trin. 〉 Artemisia sacrorum Ledeb. 〉 Thymus mongolicus Ronn. 〉 Hierochloe odorata (L.) Beauv. Clay, organic matter, and total N were the key factors that influenced the water stability of the aggregates. Total N and organic matter were the main factors that affected the water stability of the aggregates 〉 5 mm and 0.5-1 mm in size. The contents of Fe2O3, Al2O3, and physical clay (〈 0.01 mm) were the main factors which affected the water stability of the 1-2 and 0.25-0.5 mm aggregates.
基金Under the auspices of the National Natural Science Foundation of China (No .30470297)and theNationalBasicRe-searchProgram ofChina (973 Program)(No .2003CB415201 )
文摘The dry-hot valley of the Jinsha River is one of the typical eco-fragile areas in Southwest China, as well as a focus of revegetation study in the upper and middle reaches of the Changjiang River. Due to its extremely dry and hot climate, severely degraded vegetation and the intense soil and water loss, there are extreme difficulties in vegetation restoration in this area and no great breakthrough has ever been achieved on studies of revegetation over the last several decades. Through over ten years’ research conducted in the typical areas-the Yuanmou dry-hot valley, the authors found that the lithologic property is one of the crucial factors determining soil moisture conditions and vegetation types in the dry-hot valley, and the rainfall infiltration capability is also one of the key factors affecting the tree growth. Then the revegetation zoning based on different slopes was conducted and revegetation patterns for different zones were proposed.
基金Projects(51704329,51705540)supported by the National Natural Science Foundation of ChinaProject(2018JJ3671)supported by the Hunan Provincial Natural Science Foundation,China+1 种基金Project(2015CX005)supported by the Innovation Driven Plan of Central South University,ChinaProject(B14034)supported by the National 111 Project,China
文摘Bauxite residue(BR),a by-product of the industrial production of alumina,has raised environmental concerns in the last decades,due to the presence of high amounts of alkali and various heavy metal ions.Limited studies on the application of abandoned BR with massive consumption have been reported.In this study,the possibility of the revegetation using ryegrass growing on BR was discussed mainly through the growth indications and transfer of heavy metal ions in BR and plants.In the pot trails,ryegrass was seeded on BR,de-alkali BR,with(DBRO)or without(DBR)organic fertilizer,respectively.The results indicated that the remediation of bauxite residue can be achieved through de-alkali with acid neutralization.Elemental analysis indicated that the elements,except for Fe,Mn and Pb,were stable in plant roots,and ryegrass could hardly absorb Cd.But,some heavy metals such as Cu enriched in plants,which should be noted in revegetation on bauxite residue.
基金supported by Project in the National Science & Technology Pillar Program (2600BAD26B02-1)
文摘Soil plays an important role in desert ecosystem, and is vital in constructing a steady desert ecosystem. The management and restoration of desertified land have been the focus of much discussion. The soil in Shapotou desert region has developed remarkably since artificial sand-binding vegetation established in 1946. The longer the period of dune stabilization, the greater the thickness of microbiotic crusts and subsoil. Meanwhile, proportion of silt and clay increased significantly, and soil bulk density declinced. The content of soil organic matter, N, P, and K similarly increased. Therefore, soil has developed from aeolian sand soil to Calcic-Orthic aridisols. This paper discusses the effects brought about by dust, microbiotic soil crust and soil microbes on soil-forming process. Then, we analyzed the relation between soil formation and sand-binding vegetation evolution, in order to provide a baseline for both research on desert ecosystem recovery and ecological environment governance in arid and semi-arid areas.
基金supported by the Inner Mongolia Science and Technology Project of China(2022YFDZ0027)the Mongolia Basic Geographical Factors and Land Use/Cover Survey of China(2017FY101301-4)。
文摘Deserts are sensitive to environmental changes caused by human interference and are prone to degradation.Revegetation can promote the reversal of desertification and the subsequent formation of fixed sand.However,the effects of grazing,which can cause the ground-surface conditions of fixed sand to further deteriorate and result in re-desertification,on the greenhouse gas(GHG)fluxes from soils remain unknown.Herein,we investigated GHG fluxes in the Hobq Desert,Inner Mongolia Autonomous Region of China,at the mobile(desertified),fixed(vegetated),and grazed(re-desertified)sites from January 2018 to December 2019.We analyzed the response mechanism of GHG fluxes to micrometeorological factors and the variation in global warming potential(GWP).CO_(2)was emitted at an average rate of 4.2,3.7,and 1.1 mmol/(m^(2)•h)and N_(2)O was emitted at an average rate of 0.19,0.15,and 0.09μmol/(m^(2)•h)at the grazed,fixed,and mobile sites,respectively.Mean CH_(4) consumption was as follows:fixed site(2.9μmol/(m^(2)•h))>grazed site(2.7μmol/(m^(2)•h))>mobile site(1.1μmol/(m^(2)•h)).GHG fluxes varied seasonally,and soil temperature(10 cm)and soil water content(30 cm)were the key micrometeorological factors affecting the fluxes.The changes in the plant and soil characteristics caused by grazing resulted in increased soil CO_(2)and N_(2)O emissions and decreased CH_(4) absorption.Grazing also significantly increased the GWP of the soil(P<0.05).This study demonstrates that grazing on revegetated sandy soil can cause re-desertification and significantly increase soil carbon and nitrogen leakage.These findings could be used to formulate informed policies on the management and utilization of desert ecosystems.
文摘Cape Dyer (DYE-M), located on the easternmost point of Baffin Island, is a former DEW line radar station built in 1956-57 which was upgraded in 1993 as part of the current North Warning System. Environmental studies in the late 1990s and early 2000s determined that extensive soil contamination existed across the site, and excavation of six landfills and subsequent reshaping of the area in 2008 disturbed approximately 19,700 m2. A four-year pilot project was conducted between 2009 and 2012 to investigate feasibility of, and determine methods to, accelerate revegetation of the disturbed area through assisted seed dispersal of native and non native species and selective transplantation of slow-growing shrub species. Prior to revegetation efforts, plant surveys conducted in July 2009 determined that 15 species were present in the undisturbed areas, of which Salix arctica (~11%), Vaccinium uliginosum L. (~8%), and Empetrum nigrum L. (~5%) were the predominant species. A total of 14 species (three new) were observed growing on the disturbed areas between 2010 and 2012. The majority of Lolium multiflorum (annual ryegrass) seeds planted as a nurse species in 2009 grew in 2010, but most were stunted and only observed in furrows or sheltered areas at a low density. Salix arctica Pall. (willow) cuttings planted in “islands” of 20-30 cuttings in fall 2009 had a three-year survival rate of 82%, while a second set of cuttings planted in fall 2011 had a one-year survival rate of 93%. Visual observations indicate that patches of new vegetation are becoming more predominant on the disturbed area, especially around the willow islands, indicating the importance of microtopography for successful reclamation in arctic environments. Monitoring over ten or more years will be required to determine the long term success of this project.
文摘Reclamation and revegetation of a coal mine spoils with various revegetation models utilizing the mycorrhizal technology were studied. The models with different combination of plant species were designed to test the hypothesis of speedy revegetation. Root colonization and spore density of arbuscular mycorrhizae (AM) were lowest in plants seeded directly on slopes of the overburden (coal mine dump). At flat surfaces, the mycorrhizal colonization in plant species was higher than that observed at slopes. In other revegetation models, i.e., tree monoculture, tree monoculture + crop species (agroforestry), and two strata plantations (combination of different plant species), maximum AM colonization was recorded for tree species grown along with crop species. This was followed by two strata plantations and tree monoculture. In two strata plantations three categories of AM associations were recognized: 1) every plant in the combination, possessed high mycorrhizal association, 2) only one plant in the combination possessed high mycorrhizal association, and 3) none of the plants in the combination possessed high mycorrhizal association. Azadirachta indica, Pongamia pinnata, Leucaena leucocephala and Acacia catechu were most effective in catching mycorrhizae, and can be used as the effective tool in rehabilitation of the degraded ecosystems.
基金supported by the Key Orientation Project of Chinese Academy of Sciences(KZCX2-EW-301-3)Talented Young Scientist Fund of the Cold and Arid Regions Environmental and Engineering Research Institute,CAS(51Y251971)National Natural Scientific Foundation of China(41101054,41201084)
文摘Soil moisture is the key link between land hydrological and ecological processes which plays an important role in the terrestrial water cycle. As extreme weather events have increased in recent years, the stochastic simulation of soil moisture has gradually become the focus of ecohydrology research. Based on continuous monitoring of soil moisture data from 2008 to 2011, and histor- ical precipitation data from 199l to 2011, combined with the Rodriguez-Iturbe soil moisture dynamic stochastic model, soil mois- ture dynamics and its probability density fimction in a revegetated desert area was simulated. Results show that annual soil mois- ture dynamic changes of the revegetated desert area during the growing season complied with rainfall distribution; soil moisture probability presents a single-peak distribution in the plant rhizosphere layer (0-60 cm). The peak width in the 20 cm topsoil was wider than in other soils, and the distribution presented the strong fluctuations and multiple aggregates. The peak widths of 40 cm and 60 cm soil moisture probability distribution were small, which are in accordance with simulated results of the Rodri- guez-lturbe model. This confrms that the Rodriguez-Imrbe model has good applicability and can well simulate the statistical characteristics of soil moisture in an arid revegetated desert area.
文摘为探究黄土高原植物群落生物多样性与生态系统功能的关系,本研究以黄土丘陵区不同环境条件下稳定的自然植物群落为对象,采用3个物种多样性指数(Shannon-Wiener指数、Simpson优势度指数、Pielou均匀度指数)和4个功能多样性指数(FRic功能丰富度、FDiv功能趋异指数、FEve功能均匀度和FDis功能离散度),选取地上生物量(Aboveground biomass,AGB)、土壤全氮(Soil total nitrogen,STN)、土壤有机碳(Soil organic carbon,SOC)和土壤全磷(Soil total phosphorus,STP)作为生态系统功能指标,运用冗余分析和全因子回归的方法对影响生态系统功能的因素进行分析。结果表明:Shannon指数、STP随降雨量和气温递增呈现先递增后递减的趋势,FRic呈递减趋势,FDiv,AGB,SOC,STN呈递增趋势(P<0.05);年均降雨量Pa对生态系统功能的贡献值达到21.5%,功能多样性指数(FDiv,FDis,FEve)对生态系统功能的贡献值要高于物种多样性(Shannon指数),且显著影响AGB和STP(P<0.05)。综上所述,在黄土丘陵区降雨量主要影响着生态系统功能,功能多样性对生态系统功能的影响程度比物种多样性更大。本研究可为黄土高原生物多样性和生态系统功能的恢复提供理论依据。
文摘In Kuwait, the scarcity and irregularity of rainfall, the availability of areas of sand supply and the prevalence of strong north westerly winds significantly influence the stability of the fragile ecosystem. Naturally, grown native shrubs and trees can provide potential shelter to soil surface in desert areas. To study the environmental indicators provided by native plant and their ability to improve quality of life, the morphological properties of the vegetated nabkhas within different areas in Kuwait desert and within protected area were assessed. The vegetated dunes can trap maximum mobile sediments from 10.5 to 0.45 ton thus cost saving per plant estimated to be from 5.5 to 0.24 USD. The arrangements of the native plant from highest efficiency in absorbing carbon dioxides to the least were as follows: Nitraria retusa, Haloxylon salicornicum, Citrullus colocynthis, Tamarix aucheriana, Lycium shawii, Convolvolus oxyphyllus, Rhanterium epapposum, Panicum turgidum, Calligonum polygonoides, Astragalus spinosus, Cyperus conglomerates. The cost saving of CO_(2) per year estimated to be from 0.95 to 1,542.1 USD. The revegetation enhanced physical and chemical quality of soil and created microenvironments for the flora and fauna. The aim of this paper is to identify the environmental indicators related to native plants for the assessment of quality of life.