The growth, expansion and collapse of a bubble in a narrow tube are studied using both experiments and numerical simulations. In experiment, the bubble is generated by an electric spark in a water tank and recorded by...The growth, expansion and collapse of a bubble in a narrow tube are studied using both experiments and numerical simulations. In experiment, the bubble is generated by an electric spark in a water tank and recorded by a highspeed camera system. In numerical simulation, the evolution of the bubble is solved by adopting axisymmetric boundary integral equation, considering the surface tension effect. The results of experiments and numerical simulations are compared and good agreements are achieved. Both of them show that a counter-jet forms and penetrates the bubble at the end of the collapse stage, before a ring type bubble forms. Under the attraction of the tube wall due to Bjerknes force, a ring jet is generated, pointing towards the tube. On the basis of this, some physical quantities like the pressure on the tube wall and kinetic energy are calculated in a case study. The effects of tube diameters and tube lengths on the bubble's behaviors are also investigated.展开更多
The typical cross-sectional form of a submerged floating tunnel plays a significant role in the dynamic response of the tunnel itself,which directly affects the overall design.In this work,a series of experiments invo...The typical cross-sectional form of a submerged floating tunnel plays a significant role in the dynamic response of the tunnel itself,which directly affects the overall design.In this work,a series of experiments involving wave action on a submerged floating tube cross section is reported to study its hydrodynamic load characteristics.Two typical cross section tube cylinders,circular and rectangular,are chosen.Experiments are carried out in a wave flume with waves of relatively low Keulegan-Carpenter(KC)numbers.Three relative depths of submergence of 0,0.25 and 0.5 are chosen.The measured wave forces in regular waves are used to analyze the horizontal force,vertical force and torque,and then the drag coefficient(Cd)and inertia coefficient(Cm)are derived.The results show that the drag coefficients at low KC numbers are large and decrease sharply with increasing KC number.The inertial coefficient Cm values in the vertical direction are about 70%larger than those in the horizontal direction.With an increase in aspect ratio(the ratio of the height to width of the structure),the ratio of inertia coefficient in the horizontal direction to that in the vertical direction increases remarkably.The inertia force coefficient is very sensitive to the submerged water depth and aspect ratio.The existing results may overestimate the actual force value.展开更多
Ultrasonic seismic model experiment plays an important role in engineering multi wave seismic prospecting(EMSP), which has been used to do the complex engineering seismic exploration. It is introduced that the applic...Ultrasonic seismic model experiment plays an important role in engineering multi wave seismic prospecting(EMSP), which has been used to do the complex engineering seismic exploration. It is introduced that the application of the technology in quality test of Yongjiang river submarine tunnel tube foundation in the paper. The material of the model was got from on the spot. The successful test has been made with results of the model experiment.展开更多
To quantitatively determine the effect of different factors such as fracture width,dip angle,extension and filling material on Stoneley wave amplitude decreasing,the shock tube experiment method was changed from fixin...To quantitatively determine the effect of different factors such as fracture width,dip angle,extension and filling material on Stoneley wave amplitude decreasing,the shock tube experiment method was changed from fixing the sample and vertically moving the sensor in the borehole to fixing the sensors along the shock tube wall and vertically moving the sample without drilling the borehole in it.The measurement accuracy and the signal-to-noise ratio of the first Stoneley wave were improved by the time corrections and amplitude corrections of Stoneley wave signals.At the same time,21 sets of core models with different fracture parameters were processed for this measurement method by using full-diameter carbonate core,and relative amplitudes were defined to characterize Stoneley wave amplitude decreasing.The experimental results show that the relative amplitude of Stoneley wave exponentially decreases with increasing fracture width.The relative amplitude of Stoneley wave linearly decreases with increasing fracture dip angle.The relative amplitude of Stoneley wave exponentially decreases with increasing fracture extension.The relative amplitude of Stoneley wave decreases with increasing the permeability of filling material in the fracture.Under the above four conditions,the fracture width has the greatest effect on the decreasing of Stoneley wave amplitude,followed by the fracture extension and the permeability of filling material,and finally the fracture dip angle.展开更多
BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure....BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure. It usually adopts gas injection development to avoid crude oil degassing and fast decreasing production capacity. However, the phase characteristics and miscibility mechanism of this high-temperature and high-pressure fluid after gas injection are not clear. Therefore, it is necessary to study the feasibility of CO<sub>2</sub> injection to improve oil recovery in near critical volatile oil reservoirs through CO<sub>2</sub> injection experiments. In the early stage of the depletion experiment, the content of heavy components in the remaining oil increased significantly, so the depletion method is not conducive to the development of such reservoirs. With the increase of CO<sub>2</sub> injection, the volumetric expansion coefficient of formation crude oil increases significantly, while the saturation pressure and formation crude oil viscosity remain basically unchanged. The minimum miscible pressure experiment shows that CO<sub>2</sub> injection under formation pressure conditions can achieve multiphase miscibility. Based on experimental research results, the BZ13-2 oilfield is suitable for early gas injection development and can significantly improve recovery.展开更多
The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To e...The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results.展开更多
Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical proper...Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.展开更多
Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch an...Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.展开更多
A dynamic experimental apparatus to measure the instantaneous velocity and pressure in the multi-bypass pulse tube refrigerator (MPTR) was designed and constructed. Some theortant experimental results of the instantan...A dynamic experimental apparatus to measure the instantaneous velocity and pressure in the multi-bypass pulse tube refrigerator (MPTR) was designed and constructed. Some theortant experimental results of the instantaneous measurements of the velocity and the pressure in the MPTR with two-bypass tubes during actual operation are presented. The effects of the middle-bypass version on the dynamic pressure and mass flow rate at the cold end of the pulse tube are evaluated from experimental measurements.DC-flow phenomena are observed in this MPTR. The reasons of the multi-bypass version improved the performance of pulse tube refrigerator are given.展开更多
The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major in...The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major influencing factors of the mechanical deformation characteristics of the gravel and flaky stone composite cushion are studied through a physical model experiment. The following results are reported.(1) The load–settlement curves of the flaky stone cushion become more compact with a dense increment under the design load. These curves can be regarded as nonlinear mechanical characteristics. The load–settlement curves of the gravel cushion and the gravel and flaky stone composite cushion exhibit the characteristics of a two-stage linear change.(2) The flatness of the top of flaky stone cushion considerably affects settlement and secant modulus. The flatness of the top of flaky stone should be ensured during construction.(3) Gradation and thickness exert no evident effect on the compressibility of a cushion. The preloading pressure caused by the construction height difference of the cushion materials plays an important role in improving the initial stiffness of a cushion and reducing initial settlement and overall settlement.(4) This study investigates the preloading under 30 kPa of the 0.7-m flaky stone and 1.0-m gravel combination cushion. It recommends the following secant modulus values: 48.89 MPa for the section of 0–30 kPa and 10.47 MPa for the section of 30–110 kPa.展开更多
Behaviors of a prolate ellipsoid inside circular tube Poiseuille flow are studied experimentally. In the study, Reynolds number Re ∈ (100,700) and the confinement ratio D/A ∈ (1.2,2.8) are considered, where D is the...Behaviors of a prolate ellipsoid inside circular tube Poiseuille flow are studied experimentally. In the study, Reynolds number Re ∈ (100,700) and the confinement ratio D/A ∈ (1.2,2.8) are considered, where D is the diameter of the tube and A is the length of the major axis of the ellipsoid. Two typical stable motion modes are identified, namely, the horizontal, and inclined modes. Then another inclined mode (inclined mode II) is found at high Reynolds number (Re ∈ (1000,3200)) and small D/A, and the inclined angle of ellipsoid increases with the increase of Re. The possible mechanism is explained. Our experiment shows that the lagging velocity U increases as Re increases. Further numerical analysis using FLUENT shows that due to the increase of U, the moment acting on the particle would make the inclined angle of the particle increase.展开更多
基金supported by the Lloyd’s Register Educational Trust(The LRET)the National Natural Foundation of China(10976008)
文摘The growth, expansion and collapse of a bubble in a narrow tube are studied using both experiments and numerical simulations. In experiment, the bubble is generated by an electric spark in a water tank and recorded by a highspeed camera system. In numerical simulation, the evolution of the bubble is solved by adopting axisymmetric boundary integral equation, considering the surface tension effect. The results of experiments and numerical simulations are compared and good agreements are achieved. Both of them show that a counter-jet forms and penetrates the bubble at the end of the collapse stage, before a ring type bubble forms. Under the attraction of the tube wall due to Bjerknes force, a ring jet is generated, pointing towards the tube. On the basis of this, some physical quantities like the pressure on the tube wall and kinetic energy are calculated in a case study. The effects of tube diameters and tube lengths on the bubble's behaviors are also investigated.
基金supported by the National Key Research and Development Plan Project of China(Grant No.2022YFB2602800)the National Natural Science Foundation of China(Grant No.52471286)the Basic Funding of the Central Public Research Institutes(Grant Nos.TKS20220103 and TKS20230102).
文摘The typical cross-sectional form of a submerged floating tunnel plays a significant role in the dynamic response of the tunnel itself,which directly affects the overall design.In this work,a series of experiments involving wave action on a submerged floating tube cross section is reported to study its hydrodynamic load characteristics.Two typical cross section tube cylinders,circular and rectangular,are chosen.Experiments are carried out in a wave flume with waves of relatively low Keulegan-Carpenter(KC)numbers.Three relative depths of submergence of 0,0.25 and 0.5 are chosen.The measured wave forces in regular waves are used to analyze the horizontal force,vertical force and torque,and then the drag coefficient(Cd)and inertia coefficient(Cm)are derived.The results show that the drag coefficients at low KC numbers are large and decrease sharply with increasing KC number.The inertial coefficient Cm values in the vertical direction are about 70%larger than those in the horizontal direction.With an increase in aspect ratio(the ratio of the height to width of the structure),the ratio of inertia coefficient in the horizontal direction to that in the vertical direction increases remarkably.The inertia force coefficient is very sensitive to the submerged water depth and aspect ratio.The existing results may overestimate the actual force value.
文摘Ultrasonic seismic model experiment plays an important role in engineering multi wave seismic prospecting(EMSP), which has been used to do the complex engineering seismic exploration. It is introduced that the application of the technology in quality test of Yongjiang river submarine tunnel tube foundation in the paper. The material of the model was got from on the spot. The successful test has been made with results of the model experiment.
基金Supported by the PetroChina’s Fundamental Research Project(2019A-3609)。
文摘To quantitatively determine the effect of different factors such as fracture width,dip angle,extension and filling material on Stoneley wave amplitude decreasing,the shock tube experiment method was changed from fixing the sample and vertically moving the sensor in the borehole to fixing the sensors along the shock tube wall and vertically moving the sample without drilling the borehole in it.The measurement accuracy and the signal-to-noise ratio of the first Stoneley wave were improved by the time corrections and amplitude corrections of Stoneley wave signals.At the same time,21 sets of core models with different fracture parameters were processed for this measurement method by using full-diameter carbonate core,and relative amplitudes were defined to characterize Stoneley wave amplitude decreasing.The experimental results show that the relative amplitude of Stoneley wave exponentially decreases with increasing fracture width.The relative amplitude of Stoneley wave linearly decreases with increasing fracture dip angle.The relative amplitude of Stoneley wave exponentially decreases with increasing fracture extension.The relative amplitude of Stoneley wave decreases with increasing the permeability of filling material in the fracture.Under the above four conditions,the fracture width has the greatest effect on the decreasing of Stoneley wave amplitude,followed by the fracture extension and the permeability of filling material,and finally the fracture dip angle.
文摘BZ13-2 oil field is a deep submerged strongly volatile reservoir in Bohai Sea. This oil reservoir has the characteristics of high gas oil ratio and small difference in formation pressure and saturation point pressure. It usually adopts gas injection development to avoid crude oil degassing and fast decreasing production capacity. However, the phase characteristics and miscibility mechanism of this high-temperature and high-pressure fluid after gas injection are not clear. Therefore, it is necessary to study the feasibility of CO<sub>2</sub> injection to improve oil recovery in near critical volatile oil reservoirs through CO<sub>2</sub> injection experiments. In the early stage of the depletion experiment, the content of heavy components in the remaining oil increased significantly, so the depletion method is not conducive to the development of such reservoirs. With the increase of CO<sub>2</sub> injection, the volumetric expansion coefficient of formation crude oil increases significantly, while the saturation pressure and formation crude oil viscosity remain basically unchanged. The minimum miscible pressure experiment shows that CO<sub>2</sub> injection under formation pressure conditions can achieve multiphase miscibility. Based on experimental research results, the BZ13-2 oilfield is suitable for early gas injection development and can significantly improve recovery.
文摘The SMART (System-integrated Modular Advanced ReacTor) which is a 330 MWt advanced integral PWR was developed by the KAERI (Korea Atomic Energy Institute) for electricity generation and seawater desalination. To enhance its safety, the various design concepts were adopted such as the most containing of the RCS (reactor coolant system) components and a PRHRS (passive residual heat removal system). To ensure the safety and performance of the SMART, a thermal hydraulic evaluation and safety analysis are performed by the TASS/SMR-S code. It uses a one dimensional node/path modeling and point kinetics for the core power simulation. The code also has specific models reflecting the design features of the SMART such as a helical tube and PRHRS heat transfer models. In this study, the validation of the core heat transfer model in the TASS/SMR-S code on the steady conditions was performed with the Bennett's heated tube tests and THTF (thermal hydraulic test facility) experiment. From the results of the TASS/SMR-S code calculation, the CHF (critical heat flux) point and the fuel rod surface temperature were predicted conservatively compared to the test results.
基金Foundation of Key Laboratory of Coast Civil Structure Safety (Tianjin University),Ministry of EducationChinese Program for New Century Excellent Talents in University+1 种基金Seed Foundation of Tianjin UniversitySeed Foundation of Xinjiang University
文摘Based on the characteristics of an L-shaped column composed of concrete-filled square steel tubes, the axial compression experiment and nonlinear finite element analysis were carried out to study the mechanical property of the L-shaped column. The load-displacement curve for the L-shaped column, the deflection and load-strain curves for the mono columns were obtained by the axial compression experiment. The results show that the L-shaped column exhibits a flexural-torsional buckling failure mode. The numerical simulation by the finite element analysis shows that the bearing capacity and failure mode are in accordance with those of the axial compression experiment and the feasi- bility of the finite element analysis is proved. For the calculation of the bearing capacity of the L-shaped column com- posed of concrete-filled square steel tubes, an analytical method is proposed based on the theory of the elastic stability and spatial truss model. The results of the analytical method are in good agreement with those of the axial compression experiment and the finite element analysis.
基金Supported by the National Natural Science Foundation of China(11472093 and21276056)
文摘Experiments and simulations on flow and heat transfer behavior of Therminol-55 liquid phase heat transfer fluid have been conducted in a ribbed tube with the outer diameter and inner diameter 25.0 and 20.0 mm,pitch and rib height of 4.5 and 1.0 mm.respectively.Experimental results show that the heat transfer and thermal performance of Therminol-55 liquid phase heat transfer fluid in the ribbed tube are considerably improved compared to those of the smooth tube.The Nusselt number increase with the increase of Reynolds number.The increase in heat transfer rate of the ribbed tube has a mean value of 2.24 times.Also,the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.4 and 2.8 times over the smooth tube.Numerical simulations of three-dimensional flow behavior of Therminol-55 liquid phase heat transfer fluid are carried out using three different turbulence models in the ribbed tube.The numerical results show that the heat transfer of ribbed tube is improved because vortices are generated behind ribs,which produce some disruptions to fluid flow and enhance heat transfer compared with smooth tube.The numerical results prove that the ribbed tube can improve heat transfer and fluid flow performances of Therminol liquid phase heat transfer fluid.
文摘A dynamic experimental apparatus to measure the instantaneous velocity and pressure in the multi-bypass pulse tube refrigerator (MPTR) was designed and constructed. Some theortant experimental results of the instantaneous measurements of the velocity and the pressure in the MPTR with two-bypass tubes during actual operation are presented. The effects of the middle-bypass version on the dynamic pressure and mass flow rate at the cold end of the pulse tube are evaluated from experimental measurements.DC-flow phenomena are observed in this MPTR. The reasons of the multi-bypass version improved the performance of pulse tube refrigerator are given.
基金supported by the National Key Research and Development Program of China(Nos.2018YFC0809600 and 2018YFC0809602)。
文摘The immersed tube tunnel section of the Shenzhen-Zhongshan Link exhibits complex geological conditions and high back sludge strength. The tunnel cushion adopts the gravel and flaky stone combined cushion. The major influencing factors of the mechanical deformation characteristics of the gravel and flaky stone composite cushion are studied through a physical model experiment. The following results are reported.(1) The load–settlement curves of the flaky stone cushion become more compact with a dense increment under the design load. These curves can be regarded as nonlinear mechanical characteristics. The load–settlement curves of the gravel cushion and the gravel and flaky stone composite cushion exhibit the characteristics of a two-stage linear change.(2) The flatness of the top of flaky stone cushion considerably affects settlement and secant modulus. The flatness of the top of flaky stone should be ensured during construction.(3) Gradation and thickness exert no evident effect on the compressibility of a cushion. The preloading pressure caused by the construction height difference of the cushion materials plays an important role in improving the initial stiffness of a cushion and reducing initial settlement and overall settlement.(4) This study investigates the preloading under 30 kPa of the 0.7-m flaky stone and 1.0-m gravel combination cushion. It recommends the following secant modulus values: 48.89 MPa for the section of 0–30 kPa and 10.47 MPa for the section of 30–110 kPa.
基金Project supported by the National Natural Science Foundation of China(Grant No.11772326).
文摘Behaviors of a prolate ellipsoid inside circular tube Poiseuille flow are studied experimentally. In the study, Reynolds number Re ∈ (100,700) and the confinement ratio D/A ∈ (1.2,2.8) are considered, where D is the diameter of the tube and A is the length of the major axis of the ellipsoid. Two typical stable motion modes are identified, namely, the horizontal, and inclined modes. Then another inclined mode (inclined mode II) is found at high Reynolds number (Re ∈ (1000,3200)) and small D/A, and the inclined angle of ellipsoid increases with the increase of Re. The possible mechanism is explained. Our experiment shows that the lagging velocity U increases as Re increases. Further numerical analysis using FLUENT shows that due to the increase of U, the moment acting on the particle would make the inclined angle of the particle increase.