期刊文献+
共找到209,020篇文章
< 1 2 250 >
每页显示 20 50 100
Liquefaction susceptibility and deformation characteristics of saturated coral sandy soils subjected to cyclic loadings-a critical review 被引量:1
1
作者 Chen Guoxing Qin You +3 位作者 Ma Weijia Liang Ke Wu Qi C.Hsein Juang 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2024年第1期261-296,共36页
Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and respons... Coral sandy soils widely exist in coral island reefs and seashores in tropical and subtropical regions.Due to the unique marine depositional environment of coral sandy soils,the engineering characteristics and responses of these soils subjected to monotonic and cyclic loadings have been a subject of intense interest among the geotechnical and earthquake engineering communities.This paper critically reviews the progress of experimental investigations on the undrained behavior of coral sandy soils under monotonic and cyclic loadings over the last three decades.The focus of coverage includes the contractive-dilative behavior,the pattern of excess pore-water pressure(EPWP)generation and the liquefaction mechanism and liquefaction resistance,the small-strain shear modulus and strain-dependent shear modulus and damping,the cyclic softening feature,and the anisotropic characteristics of undrained responses of saturated coral sandy soils.In particular,the advances made in the past decades are reviewed from the following aspects:(1)the characterization of factors that impact the mechanism and patterns of EPWP build-up;(2)the identification of liquefaction triggering in terms of the apparent viscosity and the average flow coefficient;(3)the establishment of the invariable form of strain-based,stress-based,or energy-based EPWP ratio formulas and the unique relationship between the new proxy of liquefaction resistance and the number of cycles required to reach liquefaction;(4)the establishment of the invariable form of the predictive formulas of small strain modulus and strain-dependent shear modulus;and(5)the investigation on the effects of stress-induced anisotropy on liquefaction susceptibility and dynamic deformation characteristics.Insights gained through the critical review of these advances in the past decades offer a perspective for future research to further resolve the fundamental issues concerning the liquefaction mechanism and responses of coral sandy sites subjected to cyclic loadings associated with seismic events in marine environments. 展开更多
关键词 liquefaction susceptibility dynamic deformation characteristics coral sandy soil cyclic loading review and prospect
下载PDF
Temporal and environmental factors drive community structure and function of methanotrophs in volcanic forest soils
2
作者 Rusong Chai Hongjie Cao +3 位作者 Qingyang Huang Lihong Xie Fan Yang Hongbin Yin 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期1-13,共13页
Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The s... Methanotrophs,organisms that obtain oxygen by oxidizing methane,are recognized as the only known biological sink for atmospheric CH_4,and forest soil methanotrophs play crucial roles in mitigating global warming.The succession patterns of methanotrophic communities and functions in Wudalianchi volcano forest soils could provide a basis for the study of evolutionary mechanisms between soil microorganisms,the environment,and carbon cycling of temperate forest ecosystems under climate change.In this study,the characteristics and drivers of methanotrophic community structure and function of two volcanic soils at different stages of development are analyzed,including an old volcano and a new volcano,which most recently erupted 300 years and 17-19×10^(5)years ago,respectively,and a non-volcano hills as control,based on space for time substitution and Miseq sequencing and bioinformation technology.The results showed that CH_(4) fluxes were significantly higher in old-stage volcano forest soils than new-stage forest soils and non-volcano forest soils.There were significant differences in the community composition and diversity of soil methanotrophs from different volcano forest soils.Methylococcus was the dominant genus in all soil samples.Additionally,the relative abundance of Methylococcus,along with Clonothrix,Methyloglobulus,Methylomagum,Methylomonas and Methylosarcina,were the important genera responsible for the differences in methanotrophic community structure in different volcano forest soils.The relative abundance of methanotroph belonging toγ-proteobacteria was significantly higher than that belonging toα-proteobacteria(P<0.05).Chao1,Shannon and Simpson indices of soil methanotrophic community were significantly lower in new-stage volcanos and were significantly affected by bulk density,total porosity,p H,nitrate,dissolved organic carbon and dissolved organic nitrogen.There were significant differences in community structure between new-stage and old-stage volcanoes.Bulk density and p H are important soil properties contributing to the divergence of methanotrophs community structure,and changes in soil properties due to soil development time are important factors driving differences in methanotrophs communities in Wudalianchi volcanic soils. 展开更多
关键词 METHANOTROPHS pmo A soil development stage Volcanoes Forest soils
下载PDF
Effect of Some Physical Factors on Interrill Erosion of Soils in Gidan-Kwanu Area, Nigeria
3
作者 Ebierin Akpoebidimiyen Otuaro John Jiya Musa Micheal Abolarin 《Journal of Environmental Protection》 2024年第4期475-484,共10页
Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill ... Savanna regions in Nigeria face environmental degradation and barren land, negatively impacting food and agricultural productivity. Inter-rill erosion occurs due to raindrop impact and transport, particularly on hill slopes. A study was conducted using a sprinkler rainfall simulator and plot experiment to study soil erosion processes. Soil samples were collected from four farms in Gidan Kwanu, with varying moisture content. Sand content ranged from 46.0% to 76.20%, silt from 11.30% to 23.50%, and clay from 11.0% to 30.0%. Uncultivated and bare land had a higher average porosity (15.47% and 14.99%), while cultivated land had lower porosity (14.4%). The study found that most people in Gidan-Kwanu primarily practice farming, which is season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. The study concluded that farming practices in Gidan-Kwanu are primarily season-dependent and rain-fed. Soil type and texture significantly contribute to inter-rill erosion, with cultivated and uncultivated soil being more resistant to erosion than bare land soil. 展开更多
关键词 AGRICULTURE EROSION FARMING POROSITY soil
下载PDF
Afforestation increases microbial diversity in low-carbon soils
4
作者 Xuesen Pang Chuankuan Wang +1 位作者 Chengjie Ren Zhenghu Zhou 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期14-22,共9页
Afforestation has an important role in biodiversity conservation and ecosystem function improvement.A meta-analysis was carried out in China,which has the largest plantation area globally,to quantify the effects of pl... Afforestation has an important role in biodiversity conservation and ecosystem function improvement.A meta-analysis was carried out in China,which has the largest plantation area globally,to quantify the effects of plantings on soil microbial diversity.The results showed that the overall effect of afforestation on soil microbial diversity was positive across the country.Random forest algorithm suggested that soil carbon was the most important factor regulating microbial diversity and the positive response was only found with new plantings on low-carbon bare lands but not on high-carbon farmlands and grasslands.In addition,afforestation with broadleaved species increased microbial diversity,whereas planting with conifers had no effect on microbial diversity.This study clarified the effects of plantings on soil microbial diversity,which has an important implication for establishing appropriate policies and practices to improve the multiple functionalities(e.g.,biodiversity conservation and climate change mitigation)during plantation establishment. 展开更多
关键词 AFFORESTATION Microbial diversity soil microbial communities Species-energy theory Plantations
下载PDF
A bounding surface visco-plasticity model considering generalized spacing ratio of soils
5
作者 Xiaosen Kang Hongjian Liao +1 位作者 Qiangbing Huang Jianbing Peng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1832-1846,共15页
The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-un... The non-unique critical state of soils with time-dependent behaviors is a significant issue in geotechnical engineering problems.However,previous bounding surface plasticity models cannot predict accurately the non-unique critical state of soils,because the distance between the compression line and critical state line charged by strain-rate effect is basically neglected.To fill this gap,a generalized spacing ratio of soils is defined in the elasto-viscoplastic framework,and a bounding surface visco-plasticity model is formulated and verified,which can consider the generalized spacing ratio.Specifically,the generalized spacing ratio of soils reflects the distance between the compression line and the critical state line of soils with time-dependent behaviors.Then,the generalized spacing ratio is introduced into an improved anisotropic bounding surface.A new expression of the visco-plastic multiplier is derived by solving the consistency equation of an anisotropic bounding surface.In the expression,a strain rate index is proposed to account for the strain-rate effect on visco-plastic strain increment,and a visco-plastic hardening modulus is derived to predict the visco-plastic response of soils in overconsolidation conditions.The model is then verified through constant strain rate tests and creep tests.Notably,it can capture the non-unique critical states of soils with time-dependent behaviors due to the generalized spacing ratio and the creep rupture of soils due to the visco-plastic multiplier that considers the stress ratio and visco-plastic strain rate. 展开更多
关键词 soil Constitutive model Visco-plastic behavior Strain rate CREEP ANISOTROPIC
下载PDF
Analysis of the Fertilizing and Bioremediation Potential of Leaf Litter Compost Amendment in Different Soils through Indexing Method
6
作者 Sophayo Mahongnao Pooja Sharma +1 位作者 Arif Ahamad Sarita Nanda 《Journal of Environmental Protection》 2024年第3期265-297,共33页
This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investiga... This research study explored the efficacy of leaf litter compost as a sustainable soil amendment with the objective of promoting soil health and mitigating the accumulation of potentially toxic elements. The investigation encompassed the impact of various organic compost amendments, including leaf compost, cow dung manure, kitchen waste compost, municipal organic waste compost, and vermicompost. The study employed Inductively Coupled Plasma Mass Spectrometry (ICP-MS) to evaluate soil nutrient levels and concentrations of Potentially Toxic Elements (PTEs) such as arsenic, chromium, cadmium, mercury, lead, nickel, and lithium. The fertilization and bioremediation potential of these compost amendments are quantified using an indexing method. Results indicated a substantial increase in overall nutrient levels (carbon, nitrogen, phosphorus, potassium, and sulfur) in soils treated with leaf compost and other organic composts. Fertility indices (FI) are notably higher in compost-amended soils (ranging from 2.667 to 3.938) compared to those amended with chemical fertilizers (ranging from 2.250 to 2.813) across all soil samples. Furthermore, the mean concentrations of PTEs were significantly lower in soils treated with leaf compost and other organic compost amendments compared to those treated with chemical fertilizers amendments. The assessment through the indexing method revealed a high clean index (CI) for leaf compost amendment (ranging from 3.407 to 3.58), whereas the chemical fertilizer amendment exhibits a relatively lower CI (ranging from 2.78 to 3.20). Consequently, leaf compost and other organic composts exhibit the potential to enhance sustainable productivity, promoting soil health and environmental safety by improving nutrient levels and remediating potentially toxic elements in the soil. 展开更多
关键词 Bio-Compost soil Fertility Potentially Toxic Elements BIOREMEDIATION
下载PDF
Effect of CO_(2)exposure on the mechanical strength of geopolymerstabilized sandy soils
7
作者 Hamid Reza Razeghi Armin Geranghadr +2 位作者 Fatemeh Safaee Pooria Ghadir Akbar A.Javadi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第2期670-681,共12页
In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geop... In recent years,there has been growing interest in developing methods for mitigating greenhouse effect,as greenhouse gas emissions continue to contribute to global temperature rise.On the other hand,investigating geopolymers as environmentally friendly binders to mitigate the greenhouse effect using soil stabilization has been widely conducted.However,the effect of CO_(2)exposure on the mechanical properties of geopolymer-stabilized soils is rarely reported.In this context,the effect of CO_(2)exposure on the mechanical and microstructural features of sandy soil stabilized with volcanic ash-based geopolymer was investigated.Several factors were concerned,for example the binder content,relative density,CO_(2)pressure,curing condition,curing time,and carbonate content.The results showed that the compressive strength of the stabilized sandy soil specimens with 20%volcanic ash increased from 3 MPa to 11 MPa.It was also observed that 100 kPa CO_(2)pressure was the optimal pressure for strength development among the other pressures.The mechanical strength showed a direct relationship with binder content and carbonate content.Additionally,in the ambient curing(AC)condition,the mechanical strength and carbonate content increased with the curing time.However,the required water for carbonation evaporated after 7 d of oven curing(OC)condition and as a result,the 14-d cured samples showed lower mechanical strength and carbonate content in comparison with 7-d cured samples.Moreover,the rate of strength development was higher in OC cured samples than AC cured samples until 7 d due to higher geopolymerization and carbonation rate. 展开更多
关键词 soil stabilization CO_(2)effect GEOPOLYMER
下载PDF
At-rest lateral earth pressure of compacted expansive soils:Experimental investigations and prediction approach
8
作者 Zhong Han Pan Zhang +3 位作者 Weilie Zou Kewei Fan Sai K.Vanapalli Lianglong Wan 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第4期1425-1435,共11页
This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between the... This paper presents experimental studies on a compacted expansive soil,from Nanyang,China for investigating the at-rest lateral earth pressureσL of expansive soils.The key studies include(i)relationships between theσL and the vertical stressσV during soaking and consolidation,(ii)the influences of initial dry densityρd0 and moisture content w 0 on the vertical and lateral swelling pressures at no swelling strain(i.e.σV0 andσL0),and(iii)evolution of theσL during five long-term wetting-drying cycles.Experimental results demonstrated that the post-soakingσL-σV relationships are piecewise linear and their slopes in the passive state(σL>σV)and active state(σL<σV)are similar to that of the consolidationσL-σV relationships in the normal-and over-consolidated states,respectively.The soakingσL-σV relationships converge to the consolidationσL-σV relationships at a thresholdσV where the interparticle swelling is restrained.TheσL0 andσV0 increase monotonically withρd0;however,they show increasing-then-decreasing trends with the w 0.The extent of compaction-induced swelling anisotropy,which is evaluated byσL0/σV0,reduces with an increase in the compaction energy and molding water content.TheσL reduces over moisture cycles and the stress relaxation in theσL during soaking is observed.An approach was developed to predict the at-rest soakingσL-σV relationships,which requires conventional consolidation and shear strength properties and one measurement of theσL-σV relationships during soaking.The proposed approach was validated using the results of three different expansive soils available in the literature. 展开更多
关键词 Lateral earth pressure Expansive soil SOAKING Vertical stress Swelling pressure
下载PDF
Multivariate Approach to Characterizing Soil Quality of Gabonese’s Ferralitic Soils
9
作者 Neil-Yohan Musadji Rolf Gaël Mabicka Obame +4 位作者 Michel Mbina Mounguengui Jean Aubin Ondo Lydie-Stella Koutika Eric Ravire Claude Geffroy 《Open Journal of Soil Science》 2024年第4期237-268,共32页
Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivaria... Assessing soil quality is essential for crop management and soil temporal changes. The present study aims to evaluate soil quality in the Ferralitic soils context countrywide. This assessment was done using multivariate soil quality indice (SQI) models, such as additive quality index (AQI), weighted quality indexes (WQI<sub>add</sub> and WQI<sub>com</sub>) and Nemoro quality index (NQI), applied to two approaches of indicator selection: total data set (TDS) and minimum data set (MDS). Physical and chemical soil indicators were extracted from the ORSTOM’s reports resulting from a sampling campaign in different provinces of Gabon. The TDS approach shows soil quality status according to eleven soil indicators extracted from the analysis of 1,059 samples from arable soil layer (0 - 30 cm depth). The results indicated that 87% of all provinces presented a very low soil quality (Q5) whatever the model. Among soil indicators, exchangeable K<sup>+</sup> and Mg<sup>2+</sup>, bulk density and C/N ratio were retained in MDS, using principal component analysis (PCA). In the MDS approach, 50 to 63% of provinces had low soil quality grades with AQI, WQI<sub>add</sub> and NQI, whereas the total was observed with WQI<sub>com</sub>. Only 25% of provinces had medium soil quality grades with AQI and NQI models, while 12.5% (NQI) and 25% (AQI) presented high quality grades. Robust statistical analyses confirmed the accuracy and validation (0.80 r P ≤ 0.016) of AQI, WQI<sub>add</sub> and NQI into the TDS and MDS approaches. The same sensitivity index value (1.53) was obtained with AQI and WQI<sub>add</sub>. However, WQI<sub>add</sub> was chosen as the best SQI model, according to its high linear regression value (R<sup>2</sup> = 0.82) between TDS and MDS. This study has important implications in decision-making on monitoring, evaluation and sustainable management of Gabonese soils in a pedoclimatic context unfavorable to plant growth. 展开更多
关键词 GABON Ferralitic soil soil Indicators Standard Score Function soil Quality Indices Sustainable soil soil Management
下载PDF
Semi-analytical solution for drained expansion analysis of a hollow cylinder of critical state soils
10
作者 He Yang Jialiang Zhang +1 位作者 Haisui Yu Peizhi Zhuang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2326-2340,共15页
The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by ... The expansion of a thick-walled hollow cylinder in soil is of non-self-similar nature that the stress/deformation paths are not the same for different soil material points.As a result,this problem cannot be solved by the common self-similar-based similarity techniques.This paper proposes a novel,exact solution for rigorous drained expansion analysis of a hollow cylinder of critical state soils.Considering stress-dependent elastic moduli of soils,new analytical stress and displacement solutions for the nonself-similar problem are developed taking the small strain assumption in the elastic zone.In the plastic zone,the cavity expansion response is formulated into a set of first-order partial differential equations(PDEs)with the combination use of Eulerian and Lagrangian descriptions,and a novel solution algorithm is developed to efficiently solve this complex boundary value problem.The solution is presented in a general form and thus can be useful for a wide range of soils.With the new solution,the non-self-similar nature induced by the finite outer boundary is clearly demonstrated and highlighted,which is found to be greatly different to the behaviour of cavity expansion in infinite soil mass.The present solution may serve as a benchmark for verifying the performance of advanced numerical techniques with critical state soil models and be used to capture the finite boundary effect for pressuremeter tests in small-sized calibration chambers. 展开更多
关键词 Cavity expansion Drained analysis Boundary effect Critical state soil Non-self-similar Eulerian-Lagrangian approach
下载PDF
Application of multi-algorithm ensemble methods in high-dimensional and small-sample data of geotechnical engineering:A case study of swelling pressure of expansive soils
11
作者 Chao Li Lei Wang +1 位作者 Jie Li Yang Chen 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第5期1896-1917,共22页
Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))data... Geotechnical engineering data are usually small-sample and high-dimensional,which brings a lot of challenges in predictive modeling.This paper uses a typical high-dimensional and small-sample swell pressure(P_(s))dataset to explore the possibility of using multi-algorithm hybrid ensemble and dimensionality reduction methods to mitigate the uncertainty of soil parameter prediction.Based on six machine learning(ML)algorithms,the base learner pool is constructed,and four ensemble methods,Stacking(SG),Blending(BG),Voting regression(VR),and Feature weight linear stacking(FWL),are used for the multi-algorithm ensemble.Furthermore,the importance of permutation is used for feature dimensionality reduction to mitigate the impact of weakly correlated variables on predictive modeling.The results show that the proposed methods are superior to traditional prediction models and base ML models,where FWL is more suitable for modeling with small-sample datasets,and dimensionality reduction can simplify the data structure and reduce the adverse impact of the small-sample effect,which points the way to feature selection for predictive modeling.Based on the ensemble methods,the feature importance of the five primary factors affecting P_(s) is the maximum dry density(31.145%),clay fraction(15.876%),swell percent(15.289%),plasticity index(14%),and optimum moisture content(13.69%),the influence of input parameters on P_(s) is also investigated,in line with the findings of the existing literature. 展开更多
关键词 Expansive soils Swelling pressure Machine learning(ML) Multi-algorithm ensemble Sensitivity analysis
下载PDF
Physical and mechanical properties and microstructures of submarine soils in the Yellow Sea
12
作者 Zhuangcai Tian Yihua Chang +6 位作者 Sichao Chen Gengchen Wang Yanhong Hu Chuan Guo Lei Jia Lei Song Jianhua Yue 《Deep Underground Science and Engineering》 2024年第2期197-206,共10页
In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical propertie... In recent years,the exploration of seabed has been intensified,but the submarine soils of silt and sand in the Yellow Sea area have not been well investigated so far.In this study,the physical and mechanical properties of silt and sand from the Yellow Sea were measured using a direct shear apparatus and their microstructures were observed using a scanning electron microscope.The test results suggest that the shear strength of silt and sand increases linearly with the increase of normal stress.Based on the direct shear test,the scanning electron microscope was used to observe the section surface of sand.It is observed that the section surface becomes rough,with many“V”‐shaped cracks.Many particles appear on the surface of the silt structure and tend to be disintegrated.The X‐ray diffraction experiment reveals that the sand and silt have different compositions.The shear strength of sand is slightly greater than that of silt under high stress,which is related to the shape of soil particles and the mineral composition.These results can be a reference for further study of other soils in the Yellow Sea;meanwhile,they can serve as soil parameters for the stability and durability analyses of offshore infrastructure construction. 展开更多
关键词 direct shear test MICROSCOPE physical properties submarine soil Yellow Sea
下载PDF
Extended wet sieving method for determination of complete particle size distribution of general soils
13
作者 Shengnan Ma Yi Song +2 位作者 Jiawei Liu Xingyu Kang Zhongqi Quentin Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期242-257,共16页
The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional meth... The traditional standard wet sieving method uses steel sieves with aperture?0.063 mm and can only determine the particle size distribution(PSD)of gravel and sand in general soil.This paper extends the traditional method and presents an extended wet sieving method.The extended method uses both the steel sieves and the nylon filter cloth sieves.The apertures of the cloth sieves are smaller than 0.063 mm and equal 0.048 mm,0.038 mm,0.014 mm,0.012 mm,0.0063 mm,0.004 mm,0.003 mm,0.002 mm,and 0.001 mm,respectively.The extended method uses five steps to separate the general soil into many material sub-groups of gravel,sand,silt and clay with known particle size ranges.The complete PSD of the general soil is then calculated from the dry masses of the individual material sub-groups.The extended method is demonstrated with a general soil of completely decomposed granite(CDG)in Hong Kong,China.The silt and clay materials with different particle size ranges are further examined,checked and verified using stereomicroscopic observation,physical and chemical property tests.The results further confirm the correctness of the extended wet sieving method. 展开更多
关键词 Particle size distribution(PSD) General soil SILT CLAY Wet sieving Physical and chemical properties
下载PDF
Health risk assessment of trace metal(loid)s in agricultural soils based on Monte Carlo simulation coupled with positive matrix factorization model in Chongqing, southwest China
14
作者 MA Jie CHU Lijuan +3 位作者 SUN Jing WANG Shenglan GE Miao DENG Li 《Journal of Mountain Science》 SCIE CSCD 2024年第1期100-112,共13页
This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed ... This study aimed to investigate the pollution characteristics, source apportionment, and health risks associated with trace metal(loid)s(TMs) in the major agricultural producing areas in Chongqing, China. We analyzed the source apportionment and assessed the health risk of TMs in agricultural soils by using positive matrix factorization(PMF) model and health risk assessment(HRA) model based on Monte Carlo simulation. Meanwhile, we combined PMF and HRA models to explore the health risks of TMs in agricultural soils by different pollution sources to determine the priority control factors. Results showed that the average contents of cadmium(Cd), arsenic (As), lead(Pb), chromium(Cr), copper(Cu), nickel(Ni), and zinc(Zn) in the soil were found to be 0.26, 5.93, 27.14, 61.32, 23.81, 32.45, and 78.65 mg/kg, respectively. Spatial analysis and source apportionment analysis revealed that urban and industrial sources, agricultural sources, and natural sources accounted for 33.0%, 27.7%, and 39.3% of TM accumulation in the soil, respectively. In the HRA model based on Monte Carlo simulation, noncarcinogenic risks were deemed negligible(hazard index <1), the carcinogenic risks were at acceptable level(10^(-6)<total carcinogenic risk ≤ 10^(-4)), with higher risks observed for children compared to adults. The relationship between TMs, their sources, and health risks indicated that urban and industrial sources were primarily associated with As, contributing to 75.1% of carcinogenic risks and 55.7% of non-carcinogenic risks, making them the primary control factors. Meanwhile, agricultural sources were primarily linked to Cd and Pb, contributing to 13.1% of carcinogenic risks and 21.8% of non-carcinogenic risks, designating them as secondary control factors. 展开更多
关键词 Monte Carlo simulation Health risk assessment Trace metal(loid)s Positive matrix factorization Agricultural soils
下载PDF
Heavy Metal Remediation in AgoèNyivéLandfill Soils: Enhancing Stability through Organic Amendments
15
作者 Bassaï Magnoudéwa Bodjona Diyakadola Dihéénane Bafai Gado Tchangbedji 《Open Journal of Applied Sciences》 2024年第4期961-975,共15页
The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they cont... The burial of waste in developing countries, which is often carried out without respect for environmental standards, constitutes a risk of contamination of soils and even groundwater given the toxic elements they contain. The objective of this work is to carry out a study of the retention of heavy metals through the contribution of cattle manure to soil samples from the final Agoè Nyivé landfill in Lomé, Togo. Soil samples from the final landfill were taken from the surface and depth at several locations to form a composite sample. The amendment of the composite sample was carried out with bovine manure on the mock-up in the Laboratory for six months. The determination of the total contents of heavy metals by the atomic absorption spectrophotometer (SAA) on the composite sample showed high contents exceeding the thresholds recommended by the AFNOR NF U 44-041 standard. Sequential extraction on these composite samples showed that the mobile portions of lead, cadmium, copper and zinc are respectively estimated at 78.06%, 50%, 28.89% and 91.59%. The bovine manure used to amend the landfill samples presents physicochemical parameters that can contribute to rendering heavy metals immobile in the soil matrix under natural conditions. The addition of manure initially made it possible to increase the values of pH, electrical conductivity, cation exchange capacity and organic matter, which promote the retention of heavy metals. Secondly, the addition of manure made it possible to reduce the mobile portion of the heavy metals studied;from 78.06% to 14.39% for lead, from 50% to 11.52% for cadmium, from 28.89% to almost 0% for copper and from 91.15% to 80.58% for zinc. The use of cattle manure as an amendment on the composite sample was decisive in reducing the mobility of heavy metals in the polluted soils of the final landfill. 展开更多
关键词 POLLUTION Heavy Metals soil Sequential Extraction DISCHARGE
下载PDF
Heavy Metals in Agricultural Soils of Constanza, Jarabacoa, San José de Ocoa, Azua, Barahona and San Juan de la Maguana, Dominican Republic, 2022
16
作者 Ramón Delanoy Carime Matos-Espinosa Yamilesa Herrera de los Santos 《Journal of Geoscience and Environment Protection》 2024年第1期64-79,共16页
The objective of this study was to establish a baseline for future studies that aim to determine possible contamination from human, agricultural and industrial activities. As well as the determination of the indices o... The objective of this study was to establish a baseline for future studies that aim to determine possible contamination from human, agricultural and industrial activities. As well as the determination of the indices of environmental or geological contamination and enrichment factors of heavy metals Cr, Ni, Cu, Zn, As, Cd, Hg and Pb in agricultural soils of Constanza, Jarabacoa, Rancho Arriba and San José de Ocoa (SJO), municipalities located in the valleys of the Central mountain range of the Dominican Republic. The determination of the concentrations of heavy metals was carried out using the X-ray Fluorescence technique. Just like in Azua, San Juan de la Maguana (SJM) y Barahona in the southwest. Producer municipalities of vegetables, rice, beans, corn, melon, watermelon, tomato, banana, avocado, sugar cane and fodder for cattle. The concentration of 160 mg·kg<sup>-1</sup> Probable Effect Level (PEL) of Cr according to the SQuiRTs table (USEPA-NOAA) for agricultural soils, were exceeded in 50% of the samples in SJM, SJO, Jarabacoa and Constanza;in Barahona and Azua by 20%. The PEL of 42.8 mg·kg-1</sup><sup></sup> of the Ni was higher in more than 50% of the samples from SJM, Azua, Barahona and Jarabacoa;in SJO and Constanza at 35%. In the case of Cu with a PEL of 108 mg·kg-1</sup><sup></sup> in SJO and Constanza, 5% of the samples exceeded its, in the other areas the concentrations were lower. Zn, As and Pb did not manage to exceed their respective PEL. 展开更多
关键词 soil Heavy Metals Constanza Azua X-Ray Fluorescence
下载PDF
Variations in Soil Organic Matter Content in Cultivated and Uncultivated Calcareous Soils from the Mediterranean Island of Malta after 15 Years of Cultivation
17
作者 Anthony T. Sacco Marcelle Agius Clara Didier 《Open Journal of Soil Science》 2024年第4期210-226,共17页
The soils of Malta are calcareous and generally undeveloped. Organic matter (OM) in these soils is low and farmers are constantly urged to increase it. The objective of this study was to evaluate any temporal variatio... The soils of Malta are calcareous and generally undeveloped. Organic matter (OM) in these soils is low and farmers are constantly urged to increase it. The objective of this study was to evaluate any temporal variation in soil OM after 15 years of cultivation, and determine whether soil series, soil depth, and cultivation influence variation. OM was determined in the topsoil and subsoil of 7 agricultural and 4 non-agricultural sites. The sites represented 7 different soil series that are present on the island. In sampling periods 1 (t = 0 years) and 2 (t =15 years), the OM content in the collective (all soil series) bulk (topsoil and subsoil) uncultivated soil was 3.9 % and 3.8 % respectively. This was significantly greater than that of the collective bulk cultivated soil (2.4% and 2.3%). The OM in the collective uncultivated topsoil was 5.4% and 5.2% in periods 1 and 2 and was significantly higher than that of the cultivated topsoil (2.5% in both periods). The OM content in the collective uncultivated subsoil was 2.3% and 2.5% in periods 1 and 2 respectively but only that measured in period 2 was significantly higher than that of the cultivated subsoil (2.2% in both periods). On an individual soil series basis, the OM in the uncultivated topsoils was significantly higher than that of their cultivated counterparts. The differences in the subsoils were not significant. Across the uncultivated soil series, OM was significantly higher in the topsoil than in the subsoil but in the cultivated soil series the differences between topsoil and subsoil were not significant. There was no significant difference in OM between the uncultivated soils of different series, but in the cultivated the OM content was higher in soils that were more mature. After 15 years, no significant change in OM occurred in both the collective cultivated and uncultivated bulk soils, the collective topsoil and subsoil, and in most of the individual series. The OM content of each soil series was also similar to what was reported 60 and 50 years earlier by other researchers. 展开更多
关键词 soil Organic Carbon Agricultural Land Non-Agricultural Land Land Management
下载PDF
A soil quality index for subtropical sandy soils under different Eucalyptus harvest residue managements 被引量:1
18
作者 Jackson Freitas Brilhante de Sao José Maurício Roberto Cherubin +4 位作者 Luciano Kayser Vargas Bruno Brito Lisboa Josiléia Acordi Zanatta Elias Frank Araújo Cimélio Bayer 《Journal of Forestry Research》 SCIE CAS CSCD 2023年第1期243-255,共13页
Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this... Eucalyptus harvest residues are attractive energy production resources for the forestry industry.However,their removal can have adverse impacts on soil quality and forest productivity,especially in sandy soils.In this study,we assessed the effects of Eucalyptus harvest residue managements with variable intensity on forest productivity and on physical,chemical,and biological indicators of the soil quality.The experiment was conducted in a Quartzipsamment(33 g kg-1clay)planted with Eucalyptus saligna in Barra do Ribeiro in southern Brazil.Before the Eucalyptus was planted,residues from the previous rotation were subjected to five different management treatments:(1)FRM,in which all forest residues(bark,branches,leaves,and litter)were allowed to remain on the soil and only trunk wood was removed;(2)FRMB,in which was identical to FRM except that bark was also removed;(3)FRMBr,in which only trunk wood and branches were removed;(4)FRR,which involved removing all types of residues(bark,branches,leaves,and litter);and,(5)FRRs,in which all forest residues from the previous rotation were removed,and leaves and branches from the new plantation were prevented from falling onto the soil surface using a shade net.Six years after planting,soil samples were collected at four different depths(0-2.5,2.5-5,5-10,and 10-20 cm)to determine 17 soil chemical,physical,and biological indicators.The results were combined into a soil quality index(SQI)using the principal component analysis approach.The SQI reduced by 30%,in the 0-20 cm layer,due to removal of harvest residues from the previous rotation,and collection of litter before it falls on the ground.The main drivers of SQI reduction were the principal components associated with soil organic matter and biological activity.Furthermore,the SQI was positively linearly related to tree height at P<0.01 and to tree diameter at breast height at P=0.07.The adverse impact on soil quality and forest productivity in our study indicates that removal of Eucalyptus harvest residues from sandy soils should be avoided. 展开更多
关键词 Forest residues soil health soil organic carbon Microbial biomass soil conservation
下载PDF
Deadwood affects the soil organic matter fractions and enzyme activity of soils in altitude gradient of temperate forests 被引量:1
19
作者 Ewa Błońska Wojciech Prazuch Jarosław Lasota 《Forest Ecosystems》 SCIE CSCD 2023年第3期316-327,共12页
The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising no... The main objective of our study has been to determine the role of deadwood in the shaping of the amount of soil organic matter fractions in mountain forest soils.For this purpose,a climosequence approach comprising north(N)and south(S)exposure along the altitudinal gradient(600,800,1000 and 1200 m a.s.l.)was set up.By comparing the properties of decomposing deadwood and those of the soils located directly beneath the decaying wood we drew conclusions about the role of deadwood in the shaping of soil organic matter fractions and soil carbon storage in different climate conditions.The basic properties,enzymatic activity and fractions of soil organic matter(SOM)were determined in deadwood and affected directly by the components released from decaying wood.Heavily decomposed deadwood impacts soil organic matter stabilization more strongly than the less decayed deadwood and the light fraction of SOM is more sensitive to deadwood effects than the heavy fraction regardless of the location in the altitude gradient.Increase in SOM mineral-associated fraction C content is more pronounced in soils under the influence of deadwood located in lower locations of warmer exposure.Nutrients released from decaying wood stimulate the enzymatic activity of soils that are within the range of deadwood influence. 展开更多
关键词 Enzyme activity Forest soils Heavy fraction Light fraction soil organic matter
下载PDF
Source apportionment of heavy metals in soils around a coal gangue heap with the APCS-MLR and PMF receptor models in Chongqing,southwest China 被引量:3
20
作者 MA Jie SHEN Zhi-jie +4 位作者 WANG Sheng-lan DENG Li SUN Jing LIU Ping SHE Ze-lei 《Journal of Mountain Science》 SCIE CSCD 2023年第4期1061-1073,共13页
This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple... This study studied the characteristics and source apportionment of heavy metal pollution in the agricultural soil surrounding a gangue coal heap in Chongqing,China by using absolute principal component scores-multiple linear regression(APCSMLR)model and positive matrix factorization(PMF)model.The applicability of the models was compared in the assessment of source apportionment.The results showed that the average contents of Cd,Hg,As,Pb,Cr,Cu,Ni,and Zn in the surface soil were 0.46,0.14,9.66,31.2,127,95.6,76.0,and 158 mg/kg,respectively.Combined with the spatial distribution and correlation analyses,the results of source apportionment were consistent for both the APCSMLR and PMF models.Cd,Hg,As,and Pb were mainly affected by the gangue heap accumulation,with respective contributions of 74.6%,79.4%,69.1%,and 67.2%based on the APCS-MLR model and respective contributions of 69.7%,60.7%,57.4%,and 41.9%based on the PMF model.Ni and Zn were mainly affected by industrial and agricultural activities,while Cr and Cu were mainly affected by natural factors.The results of the source apportionment were approximately consistent between the APCS-MLR and PMF models.The combined application of the two receptor models can make the results of source apportionment more comprehensive,accurate,and reliable. 展开更多
关键词 Coal gangue heap Heavy metals Agricultural soil Source apportionment
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部