期刊文献+
共找到3,013篇文章
< 1 2 151 >
每页显示 20 50 100
Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems
1
作者 Anyin Qi Xiaonan Yan +10 位作者 Yuqing Liu Qingchen Zeng Hang Yuan Huange Huang Chenggang Liang Dabing Xiang Liang Zou Lianxin Peng Gang Zhao Jingwei Huang Yan Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期1-13,共13页
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on... Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis. 展开更多
关键词 Tartary buckwheat aluminum stress SILICON root growth oxidative stress
下载PDF
Oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:3
2
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第7期2429-2437,共9页
Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical ... Based on A356 aluminum alloy,aluminum foams were prepared by gas injection foaming process with pure nitrogen,air and some gas mixtures.The oxygen volume fraction of these gas mixtures varied from 0.2%to 8.0%.Optical microscopy,scanning electron microscopy(SEM) and Auger electron spectroscopy(AES) were used to analyze the influence of oxygen content on cell structure,relative density,macro and micro morphology of cell walls,coverage area fraction of oxide film,thickness of oxide film and other aspects.Results indicate that the coverage area fraction of oxide film on bubble surface increases with the increase of oxygen content when the oxygen volume is less than 1.2%.While when the oxygen volume fraction is larger than 1.6%,an oxide film covers the entire bubble surface and aluminum foams with good cell structure can be produced.The thicknesses of oxide films of aluminum foams produced by gas mixtures containing 1.6%-21%oxygen are almost the same.The reasons why the thickness of oxide film nearly does not change with the variation of oxygen content and the amount of oxygen needed to achieve 100%coverage of oxide film are both discussed.In addition,the role of oxide film on bubble surface in foam stability is also analyzed. 展开更多
关键词 aluminum foam gas injection foaming process oxide film foam stability mechanism
下载PDF
Oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process 被引量:1
3
作者 周宇通 李言祥 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2781-2788,共8页
In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron ... In the range of 620?710 °C, air was blown into A356 aluminum alloy melt to produce aluminum foams. In order to study the influence of temperature on the thickness of oxide film on bubble surface, Auger electron spectroscopy (AES) was used. Based on the knowledge of corrosion science and hydrodynamics, two oxidation kinetics models of oxide film on bubble surface were established. The thicknesses of oxide films produced at different temperatures were predicted through those two models. Furthermore, the theoretical values were compared with the experimental values. The results indicate that in the range of 620?710 °C, the theoretical values of the thickness of oxide film predicted by the model including the rising process are higher than the experimental values. While, the theoretical values predicted by the model without the rising process are in good agreement with the experimental values, which shows this model objectively describes the oxidation process of oxide film on bubble surface. This work suggests that the oxidation kinetics of oxide film on bubble surface of aluminum foams produced by gas injection foaming process follows the Arrhenius equation. 展开更多
关键词 aluminum foam gas injection foaming process oxide film oxidation kinetics
下载PDF
Synthesis and characterization of LiFePO_4 coating with aluminum doped zinc oxide 被引量:6
4
作者 汤昊 谭龙 许军 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2013年第2期451-455,共5页
Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that t... Aluminum doped zinc oxide (AZO), as an electrically conductive material, was applied to coating on the surface of olivine-type LiFePO4 synthesized by solid-state method. The charge-discharge test results show that the rate performance and low-temperature performance of LiFePO4 are greatly improved by the surface treatment. Even at 20C rate, the discharge specific capacity of 100.9 mA.h/g was obtained by the AZO-coated LiFePO4 at room temperature. At -20 ℃, the discharge specific capacity at 0.2C for un-coated LiFePO4 and the coated one are 50.3 mA.h/g and 119.4 mA.h/g, respectively. It should be attributed to the electrically conductive AZO-coating which increases the electronic conductivity of LiFePO4. Furthermore, the surface-coating increases the tap-density of LiFePO4. The results indicate that the AZO-coated LiFePO4 is a good candidate of cathode material for applying in lithium power batteries. 展开更多
关键词 lithium ion battery LIFEPO4 COATING cathode material aluminum doped zinc oxide
下载PDF
Effect of competing solutes on arsenic(Ⅴ) adsorption using iron and aluminum oxides 被引量:10
5
作者 Youngran Jeong FAN Maohong +1 位作者 Johannes Van Leeuwen Joshua F. Belczyk 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2007年第8期910-919,共10页
The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that s... The study focused on the effect of several typical competing solutes on removal of arsenic with Fe2O3 and Al2O3. The test results indicate that chloride, nitrate and sulfate did not have detectable effects, and that selenium(Ⅳ) (Se(Ⅳ)) and vanadium(Ⅴ) (V(Ⅴ)) showed slight effects on the adsorption of As(Ⅴ) with Fe2O3. The results also showed that adsorption of As(Ⅴ) on A12O3 was not affected by chloride and nitrate anions, but slightly by Se(Ⅳ) and V(Ⅴ) ions. Unlike the adsorption of As(Ⅴ) with Fe2O3, that with Fe2O3 was affected by the presence of sulfate in water solutions. Both phosphate and silica have significant adverse effects on the adsorption of As(Ⅴ) adsorption with Fe2O3 and Al2O3. Compared to the other tested anions, phosphate anion was found to be the most prominent solute affecting the As(Ⅴ) adsorption with Fe2O3 and Al2O3. In general, Fe2O3 has a better performance than Al2O3 in removal of As(Ⅴ) within a water environment where multi competing solutes are present. 展开更多
关键词 ADSORPTION ARSENIC iron oxide aluminum oxide SULFATE selenium(Ⅳ) vanadium(Ⅴ) phosphate silica
下载PDF
Effects of acetic acid on microstructure and electrochemical properties of nano cerium oxide films coated on AA7020-T6 aluminum alloy 被引量:7
6
作者 H. Hasannejad T. Shahrabi M. Aliofkhazraei 《Rare Metals》 SCIE EI CAS CSCD 2009年第1期98-101,共4页
Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scann... Nano cerium oxide films were applied on AA7020-T6 aluminum alloy and the effects of acetic acid concentration on the microstructure and electrochemical properties of the coated samples were investigated by using scanning electron microscopy (SEM), X-ray diffraction (XRD), and potentiodynamic polarization methods. It has been found that by increasing the acetic acid/CeCl3·7H2O molar ratio, high uniform and crack-free films with well-developed grains were obtained and grain sizes of the films decreased. Elimination of cracks and decreasing grain size of the nano cerium oxide films caused corrosion resistance to increase. 展开更多
关键词 nano cerium oxide films acetic acid aluminum alloy electrochemical property MICROSTRUCTURE
下载PDF
Enhanced photocatalytic activity of electrochemically synthesized aluminum oxide nanoparticles 被引量:3
7
作者 Deepak Pathania Rishu Katwal Harpreet Kaur 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第3期358-371,共14页
In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis tim... In this study, aluminum oxide (Al2O3) nanoparticles (NPs) were synthesized via an electrochemical method. The effects of reac- tion parameters such as supporting electrolytes, solvent, current and electrolysis time on the shape and size of the resulting NPs were investi- gated. The Al2O3 NPs were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, thermogravimetric analysis/differential thermal analysis, energy-dispersive X-ray analysis, and ultraviolet-visible spectroscopy. Moreover, the Al2O3 NPs were explored for photocatalytic degradation of malachite green (MG) dye under sunlight irradiation via two processes: ad- sorption followed by photocatalysis; coupled adsorption and photocatalysis. The coupled process exhibited a higher photodegradation effi- ciency (45%) compared to adsorption followed by photocatalysis (32%). The obtained kinetic data was well fitted using a pseudo-first-order model for MG degradation. 展开更多
关键词 aluminum oxide NANOPARTICLES electrochemical preparation PHOTOCATALYSIS
下载PDF
Study on phosphating treatment of aluminum alloy:role of yttrium oxide 被引量:3
8
作者 张圣麟 《Journal of Rare Earths》 SCIE EI CAS CSCD 2009年第3期469-473,共5页
Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (... Zinc phosphate coatings formed on 6061-Al alloy, after dipping in phosphating solutions containing different amounts of Y2O3(yttrium oxide), were studied by scanning electron microscopy (SEM), X-ray diffraction (XRD) and electrochemical measurements. Significant variations in the morphology and corrosion resistance afforded by zinc phosphate coating were especially observed as Y2O3 in phosphating solution varied from 0 to 40 mg/L. The addition of Y2O3 changed the initial potential of the interface between aluminum alloy substrate and phosphating solution and increased the number of nucleation sites. The phosphate coating thereby was less porous structure and covered the surface of aluminum alloy completely within short phosphating time. Phosphate coating was mainly composed of Zn3(PO4)2·4H2O (hopeite) and AlPO4(aluminum phosphate). Y2O3, as an additive of phosphatization, accelerated precipitation and refined the gain size of phosphate coating. The corrosion resistance of zinc phosphate coating in 3% NaCl solution was improved as shown by polarization measurement. In the present research, the optimal amount of Y2O3 was 10-20 mg/L, and the optimal phosphating time was 600 s. 展开更多
关键词 yttrium oxide zinc phosphate coating aluminum alloy nucleation agent ACCELERATOR rare earths
下载PDF
Chemical dissolution resistance of anodic oxide layers formed on aluminum 被引量:5
9
作者 W.BENSALAH M.FEKI +1 位作者 M.WERY H.F.AYEDI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第7期1673-1679,共7页
Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-... Chemically resistant anodic oxide layers were formed on pure aluminum substrates in oxalic acid-sulphuric acid bath.Acid dissolution tests of the obtained anodic layers were achieved in accordance with the ASTM B 680-80 specifications:35mL/L 85% H3PO4+20g/L CrO3 at 38℃.Influence of oxalic acid concentration,bath temperature and anodic current density on dissolution rate and coating ratio was examined,when the sulphuric acid concentration was maintained at 160g/L.It was found that chemically resistant and compact oxide layers were produced under low operational temperature (5℃) and high current densities (3A/dm^2).A beneficial effect was observed concerning the addition of oxalic acid (18g/L).The morphology and the composition of the anodic oxide layer were examined by scanning electron microscopy (SEM),atomic force microscopy (AFM) and glow-discharge optical emission spectroscopy (GDOES). 展开更多
关键词 aluminum anodic oxide layer oxalic acid-sulphuric anodization dissolution rate coating ratio
下载PDF
Evaluation of nanometer-sized zirconium oxide incorporated Al-Mg-Ga-Sn alloy as anode for alkaline aluminum batteries 被引量:2
10
作者 Mortaza AFSHARI Robab ABBASI Mohammad Reza SOVIZI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第1期90-98,共9页
Zirconium oxide nanoparticles with 0.4 wt.%and 0.8 wt.%are incorporated into the Al-0.65 Mg-0.05 Ga-0.15 Sn(wt.%)alloy anode(base alloy)in order to improve the performance of the resulting anodes.Electrochemical chara... Zirconium oxide nanoparticles with 0.4 wt.%and 0.8 wt.%are incorporated into the Al-0.65 Mg-0.05 Ga-0.15 Sn(wt.%)alloy anode(base alloy)in order to improve the performance of the resulting anodes.Electrochemical characterization of the reinforced alloys was done by potentiodynamic polarization,electrochemical impedance spectroscopy and galvanostatic discharge and corrosion behavior was evaluated using self-corrosion rate and hydrogen evolution in 4 mol/L KOH solution.The surface morphology of the alloys was also studied using field emission scanning electron microscope(FESEM).The obtained results indicate that the base alloy shows high corrosion rate in 4 mol/L KOH solution by releasing 0.47 m L/(min·cm^2)hydrogen gas,whereas the alloy containing 0.8 wt.%Zr O2 provides the lowest hydrogen evolution rate by releasing 0.32 m L/(min·cm^2)hydrogen gas.Furthermore,by increasing zirconium oxide nanoparticles,the corrosion current density of the aluminum anodes is decreased and their corrosion resistance increases significantly compared to the base alloy in alkaline solution.In addition,nanometer-sized zirconium oxide incorporated anodes exhibit the improved galvanic discharge efficiencies,so that 0.8 wt.%nano-zirconium oxide incorporated base alloy displays the highest power density and anodic utilization compared with the others in 4 mol/L KOH solution. 展开更多
关键词 aluminum anode zirconium oxide nanoparticles electrochemical impedance spectroscopy POLARIZATION corrosion
下载PDF
INTERACTION OF OXIDE FILM WITH MOLTEN FLUX DURING ALUMINUM BRAZING 被引量:1
11
作者 ZHANG Qiyun LIU Shuqi ZHANG Yuhua, Peking University, Beijing, China 《Acta Metallurgica Sinica(English Letters)》 SCIE EI CAS CSCD 1989年第11期344-347,共4页
The interaction of oxide film with molten flux during aluminum brazing has been studied by means of X-ray powder diffraction. The following conclusions have been deduced: The swell- ing of aluminum oxide film is cause... The interaction of oxide film with molten flux during aluminum brazing has been studied by means of X-ray powder diffraction. The following conclusions have been deduced: The swell- ing of aluminum oxide film is caused by Li^+ inserting into the vacancies of octahedral or tetrahedral structure of 0 atom skeleton in у-Al_2O_3 . The strength of oxide film decreases as the crytallinity increases by the treating of flux containing LiF. 展开更多
关键词 molten salt flux aluminum oxide film X-ray powder diffraction
下载PDF
Reaction behavior between the oxide film of LY12 aluminum alloy and the flux 被引量:1
12
作者 薛松柏 董健 +1 位作者 吕晓春 顾文华 《China Welding》 EI CAS 2004年第1期36-40,共5页
In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF_3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum all... In this paper, the brazing mechanism of LY12 aluminum alloy at middle range temperature was presented. The CsF-AlF_3 non-corrosive flux was utilized to remove the complex oxide film on the surface of LY12 aluminum alloy. The results revealed that the oxide film was removed by the improved CsF-AlF_3 flux accompanied with the occurrence of reaction as well as dissolution and the compounds CsF played an important role to remove the oxide film. Actually, the high activity of flux, say, the ability to remove the oxide film, was due to the presence of the compounds, such as NH_4F,NH_4AlF_4 and composite molten salt. The production of HF was the key issue to accelerate the reaction and enhance to eliminate the oxide film by dissolution. It was found that the rare earth element La at small percentage was not enriched at the interface. Moreover, the rare earth fluoride enhanced the dissolution behavior. 展开更多
关键词 LY12 aluminum alloy oxide film rare earth fluoride La
下载PDF
Cylindrical and Spherical Membranes of Anodic Aluminum Oxide with Highly Ordered Conical Nanohole Arrays 被引量:1
13
作者 Yantao Pang Rohith Chandrasekar 《Natural Science》 2015年第5期232-237,共6页
Nanoporous anodic aluminum oxide (AAO) with uniform and controllable pore diameters and periods over a wide range has been explored for various applications due to relatively easy fabrication processes. Moreover, one ... Nanoporous anodic aluminum oxide (AAO) with uniform and controllable pore diameters and periods over a wide range has been explored for various applications due to relatively easy fabrication processes. Moreover, one of the interesting possibilities afforded by the anodization process is that the anodization can take place on aluminum films with arbitrary shape, such as a section of cylinder or sphere, which has not yet been well studied or applied in nanofabrication. In this paper, we report that highly ordered conical nanohole arrays prepared by the anodization of cylindrical and spherical Al films have been fabricated. As can be seen by scanning electron microscopy (SEM), straight nanohole arrays have been grown along the radical directions of the cylindrical or spherical alumina membrane without bending or branching at all, the diameter of the conical nanoholes and the diameter change along individual channels can be tuned by changing the curvature of the membrane. These new types of templates may open new opportunities in optical, electronic and electrochemical applications. 展开更多
关键词 NANOPOROUS Anodic aluminum oxide Conical NANOHOLE ARRAYS
下载PDF
Heat transfer intensification in hydromagnetic and radiative 3D unsteady flow regimes: A comparative theoretical investigation for aluminum and γ-aluminum oxides nanoparticles 被引量:2
14
作者 Naveed AHMED ADNAN +3 位作者 Umar KHAN Syed Zulfiqar Ali ZAIDI Imran FAISAL Syed Tauseef MOHYUD-DIN 《Journal of Central South University》 SCIE EI CAS CSCD 2019年第5期1233-1249,共17页
This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equation... This article investigates the colloidal study for water and ethylene glycol based nanofluids.The effects of Lorentz forces and thermal radiation are considered.The process of non-dimensionalities of governing equations is carried out successfully by means of similarity variables.Then,the resultant nonlinear nature of flow model is treated numerically via Runge-Kutta scheme.The characteristics of various pertinent flow parameters on the velocity,temperature,streamlines and isotherms are discussed graphically.It is inspected that the Lorentz forces favors the rotational velocity and rotational parameter opposes it.Intensification in the nanofluids temperature is observed for volumetric fraction and thermal radiation parameter and dominating trend is noted for γ-aluminum nanofluid.Furthermore,for higher rotational parameter,reverse flow is investigated.To provoke the validity of the present work,comparison between current and literature results is presented which shows an excellent agreement.It is examined that rotation favors the velocity of the fluid and more radiative fluid enhances the fluid temperature.Moreover,it is inspected that upturns in volumetric fraction improves the thermal and electrical conductivities. 展开更多
关键词 conventional fluids aluminum and γ-aluminum oxides magnetic field thermal radiation Runge-Kutta scheme shear stress local rate of heat transfer
下载PDF
Aluminum(Ⅲ) triflate-catalyzed selective oxidation of glycerol to formic acid with hydrogen peroxide 被引量:1
15
作者 Kang Kong Difan Li +3 位作者 Wenbao Ma Qingqing Zhou Guoping Tang Zhenshan Hou 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第4期534-542,M0003,共10页
Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conve... Glycerol is a by-product of biodiesel production and is an important readily available platform chemical.Valorization of glycerol into value-added chemicals has gained immense attention.Herein,we carried out the conversion of glycerol to formic acid and glycolic acid using H2O2 as an oxidant and metal(Ⅲ)triflate-based catalytic systems.Aluminum(Ⅲ)triflate was found to be the most efficient catalyst for the selective oxidation of glycerol to formic acid.A correlation between the catalytic activity of the metal cations and their hydrolysis constants(Kh)and water exchange rate constants was observed.At 70 ℃,a formic acid yield of up to 72% could be attained within 12 h.The catalyst could be recycled at least five times with a high conversion rate,and hence can also be used for the selective oxidation of other biomass platform molecules.Reaction kinetics and 1H NMR studies showed that the oxidation of glycerol(to formic acid)involved glycerol hydrolysis pathways with glyceric acid and glycolic acid as the main intermediate products.Both the [Al(OH)x]^n+ Lewis acid species and CF3SO3H Brosted acid,which were generated by the in-situ hydrolysis of Al(OTf)3,were responsible for glycerol conversion.The easy availability,high efficiency,and good recyclability of Al(OTf)3 render it suitable for the selective oxidation of glycerol to high value-added products. 展开更多
关键词 aluminum(Ⅲ)triflate GLYCEROL Hydrogen peroxide Selective oxidation Formic acid
下载PDF
Evolution of Surface Oxide Film of Typical Aluminum Alloy During Medium-Temperature Brazing Process 被引量:1
16
作者 程方杰 赵海微 +2 位作者 王颖 肖兵 姚俊峰 《Transactions of Tianjin University》 EI CAS 2014年第1期54-59,共6页
The evolution of the surface oxide film along the depth direction of typical aluminum alloy under mediumtemperature brazing was investigated by means of X-ray photoelectron spectroscopy(XPS). For the alloy with Mg con... The evolution of the surface oxide film along the depth direction of typical aluminum alloy under mediumtemperature brazing was investigated by means of X-ray photoelectron spectroscopy(XPS). For the alloy with Mg content below 2.0wt%, whether under cold rolling condition or during medium-temperature brazing process, the enrichment of Mg element on the surface was not detected and the oxide film was pure Al2O3. However, the oxide film grew obviously during medium-temperature brazing process, and the thickness was about 80 nm. For the alloy with Mg content above 2.0wt%, under cold rolling condition, the original surface oxide film was pure Al2O3. However, the Mg element was significantly enriched on the outermost surface during medium-temperature brazing process, and MgO-based oxide film mixed with small amount of MgAl2O4 was formed with a thickness of about 130 nm. The alloying elements of Mn and Si were not enriched on the surface neither under cold rolling condition nor during mediumtemperature brazing process for all the selected aluminum alloy, and the surface oxide film was similar to that of pure aluminum, which was almost entire Al2O3. 展开更多
关键词 aluminum alloy oxide film phase structure X-ray photoelectron spectroscopy medium-temperaturebrazing
下载PDF
Formation of unidirectional nanoporous structures in thickly anodized aluminum oxide layer 被引量:1
17
作者 Hyun-Chae NA Taek-Jin SUNG +6 位作者 Seok-Heon YOON Seung-Kyoun HYUN Mok-Soon KIM Young-Gi LEE Sang-Hyun SHIN Seok-Moon CHOI Sung YI 《中国有色金属学会会刊:英文版》 EI CSCD 2009年第4期1013-1017,共5页
A series of anodic aluminum oxide(AAO) was grown on the commercially pure 1050 aluminum sheet by controlling electrolyte temperature(2-15 ℃) and anodizing time(0.5-6 h),using a fixed applied current density of 3 A/dm... A series of anodic aluminum oxide(AAO) was grown on the commercially pure 1050 aluminum sheet by controlling electrolyte temperature(2-15 ℃) and anodizing time(0.5-6 h),using a fixed applied current density of 3 A/dm2 in diluted sulfuric acid electrolyte.A crack-free thick AAO with the thickness of 105-120 μm and containing unidirectional nano sized pores(average pore diameter of 5-7 nm) is successfully achieved in the specimens anodized for 2 h,irrespective of electrolyte temperature.When anodizing time reaches 6 h,very thick AAO with the thickness of 230-284 μm is grown,and average diameter of unidirectional pores is in the range of 6-24 nm.The higher values in both the AAO thickness and pore diameter are attained for the specimens anodized at higher temperatures of 10-15 ℃.A crack is observed to exist in the AAO after anodizing up to 4 h and more.A higher fraction(more than 9%) of the crack is shown in the specimens anodized at higher temperatures of 10-15 ℃ for 6 h and a considerable amount of giant cracks are contained. 展开更多
关键词 阳极氧化铝 纳米孔 单向 结构层 电解液温度 平均直径 氧化时间 硫酸电解液
下载PDF
Influence of Surface Oxide Films on Elastic Behaviors of Straight Screw Dislocations Parallel to the Surface of Pure Aluminum
18
作者 Weimin MAO Dong LI Yongning YU 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2007年第3期392-394,共3页
The image stress of straight screw dislocations parallel to the medium surface covered by thin heterogeneous films was analyzed and deduced, in order to calculate the image shear stress. The relationship between image... The image stress of straight screw dislocations parallel to the medium surface covered by thin heterogeneous films was analyzed and deduced, in order to calculate the image shear stress. The relationship between image stress and distance from the screw dislocation to the interface of pure aluminum and its oxide covering was calculated based on the analysis. It was shown quantitatively that a sign conversion of the image stress appears in the case of thin oxide covering, while dislocation would pile up near the interface because of the possible slips of the screw dislocations induced by the image stress, which might break down the very thin oxide covering. Further investigation on edge dislocations or other dislocation configurations need to be done. 展开更多
关键词 DISLOCATION Image force INTERFACE SURFACE aluminum oxide film STRESS
下载PDF
Porous Spherical Cellulose Composites Coated by Aluminum (Ⅲ) Oxide and Silicone: Preparation, Characterization and Adsorption Behavior
19
作者 Meng Ling zhi, Du Chuan qing, Chen Yuan yin, He Yong bing, Jiang Juan, Wan Shu hui College of Chemistry & Molecular Science, Wuhan University, Wuhan 430072, China 《Wuhan University Journal of Natural Sciences》 CAS 2001年第3期733-736,共4页
Porous spherical cellulose composite (PSCA) coated by aluminum(Ⅲ) oxide was prepared and modified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it has spherical shape and ab... Porous spherical cellulose composite (PSCA) coated by aluminum(Ⅲ) oxide was prepared and modified by organosilicone. SEM images of the surface morphology of the bead cellulose shows that it has spherical shape and abundant porous structure on its surface. The mapping images of aluminum and silicon of the composite (PSCAS) present aluminum(Ⅲ) oxide and silicone are uniformly dispersed on the surface. The adsorption behavior of PSCAS toward metal ions was determined. 展开更多
关键词 cellulose composites spherical cellulose aluminum oxide silicome adsorption
下载PDF
Effects of the Annealing Heating Rate on Sputtered Aluminum Oxide Films
20
作者 唐秀凤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第1期94-99,共6页
AlxOy films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed... AlxOy films by DC reactive magnetron sputtering were annealed in air ambient at 500 ℃for 1 h with different heating rates of 5,15,and 25 ℃/min.Then heat treatments at 900 ℃ were carried out on these 500 ℃-annealed films to simulate the high-temperature application environment.Effects of the annealing heating rate on structure and properties of both 500 ℃-annealed and 900 ℃-heated films were investigated systematically.It was found that distinct γ-Al2O3 crystallization was observed in the 900 ℃-heated films only when the annealing heating rates are 15 and 25 ℃/min.The 500 ℃-annealed film possessed the most compact surface morphology in the case of 25 ℃/min.The highest microhardness of both 500 ℃-annealed and 900℃-heated films were obtained when the annealing heating rate was 15 ℃/min. 展开更多
关键词 aluminum oxide film SPUTTERING annealing heating rate MICROSTRUCTURE
下载PDF
上一页 1 2 151 下一页 到第
使用帮助 返回顶部