We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water...We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.展开更多
Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined ...Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined with high-precision CT scanning digital core model reconstruction technology, hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs are studied. The research shows that: In thin interbedded shale oil reservoir, the interlayer difference of rock mechanics and the interlayer interface near the wellbore cannot restrain the growth of fracture height effectively, but has a significant impact on the fracture width distribution in the fracture height direction. Hydraulic fractures in these reservoirs tend to penetrate into the adjacent layer in “step-like” form, but have a smaller width at the interface deflection, which hinders the transport of proppant in vertical direction, resulting in a poor effect of layer-crossing growth. In shale layers with dense laminae, hydraulic fractures tend to form “丰” or “井” shapes. If the perforated interval is large in rock strength and high in breakdown pressure, the main fracture is fully developed initially, large in width, and supported by enough sand. In contrast, if the perforated interval is low in strength and rich in laminae, the fracturing fluid filtration loss is large, the breakdown pressure is low, the main fracture will not open wide initially, and likely to have sand plugging. Proppant is mainly concentrated in the main hydraulic fractures with large width near the perforated layer, activated laminae, branch fractures and fractures in adjacent layers contain only a small amount of(or zero) proppant. The proppant is placed in a limited range on the whole. The limit width of fracture that proppant can enter is about 2.7 times the proppant particle size.展开更多
This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the locati...This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the location, area and permeability of a thin low-permeability interbed, and the perforation location relative to the interbed. Simulation results show the locations from where the incremental oil was displaced by the polymer solution. The interbed position from the oil formation top affects the location of extra-displaced oil. The interbed area has a slight influence on the whole shape of extra-displaced oil. Larger interbed area leads to higher partition extent of extra-displaced oil. Higher vertical permeability of interbeds contributes to worse partition extent of extra-displaced oil and the partition effect disappears if the ratio of vertical to horizontal permeability is more than 0.05. The perforation location relative to the interbed affects polymer displacement efficiency, and also has a significant effect on the distribution of extra-displaced oil in polymer flooding.展开更多
利用一种长链甜菜碱表面活性剂在酸液中的聚集形态变化,形成了以土酸为主体酸的自转向酸体系:15%HCl+3%HF+4%转向剂+1%缓蚀剂+0.5%铁离子稳定剂。该体系在酸化改造过程中不需要大量钙镁离子的"交联"作用,仅依靠自身聚集形态...利用一种长链甜菜碱表面活性剂在酸液中的聚集形态变化,形成了以土酸为主体酸的自转向酸体系:15%HCl+3%HF+4%转向剂+1%缓蚀剂+0.5%铁离子稳定剂。该体系在酸化改造过程中不需要大量钙镁离子的"交联"作用,仅依靠自身聚集形态随酸浓度的变化即可增黏,胶束平均水合直径最大可达330.5 nm,酸液黏度最大可达180 m Pa·s,能有效实现砂泥岩储层暂堵转向酸化的目的。体系缓速性能出色,酸岩反应20 min后,含转向剂的土酸酸液溶蚀率仅为13%,并且具有良好的耐高温流变性,在90℃下剪切90 min后的黏度依然保持在60m Pa·s以上。自转向酸残酸凝胶与地层原油接触120 min后,酸液黏度降至10 m Pa·s左右,能加快残酸返排。现场试验表明,自转向土酸酸液体系在砂岩储层增产效果明显。展开更多
基金sponsored by the China Postdoctoral Science Foundation Projects(2014M550779)
文摘We present the first successful application of three-component seismic data to thin interbedded reservoir characterization in the Daqing placanticline of the LMD oilfield. The oilfield has reached the final high water cut stage and the principal problem is how to recognize the boundaries of sand layers that are thicker than 2 m. Conventional interpretation of single PP-wave seismic data results in multiple solutions, whereas the introduction of PS-wave enhances the reliability of interpretation. We analyze the gas reservoir characteristics by joint PP- and PS-waves, and use the amplitude and frequency decomposition attributes to delineate the gas reservoir boundaries because of the minimal effect of fl uids on S-wave. We perform joint inversion of PP- and PS-waves to obtain V P/V S, λρ, and μρ and map the lithology changes by using density, λρ, and μρ. The 3D–3C attribute λρ slices describe the sand layers distribution, while considering the well log data, and point to favorable region for tapping the remaining oil.
基金National Natural Science Foundation of China(NO.51974332)Strategic Cooperation Project Between PetroChina and China University of Petroleum(Beijing)(NO.ZLZX2020-07)。
文摘Small-scale true triaxial sand fracturing experiments are conducted on thin interbedded shale samples made from cores of Permian Lucaogou Formation shale oil reservoir in Jimsar sag, Junggar Basin, NW China. Combined with high-precision CT scanning digital core model reconstruction technology, hydraulic fracture geometry and proppant distribution in thin interbedded shale oil reservoirs are studied. The research shows that: In thin interbedded shale oil reservoir, the interlayer difference of rock mechanics and the interlayer interface near the wellbore cannot restrain the growth of fracture height effectively, but has a significant impact on the fracture width distribution in the fracture height direction. Hydraulic fractures in these reservoirs tend to penetrate into the adjacent layer in “step-like” form, but have a smaller width at the interface deflection, which hinders the transport of proppant in vertical direction, resulting in a poor effect of layer-crossing growth. In shale layers with dense laminae, hydraulic fractures tend to form “丰” or “井” shapes. If the perforated interval is large in rock strength and high in breakdown pressure, the main fracture is fully developed initially, large in width, and supported by enough sand. In contrast, if the perforated interval is low in strength and rich in laminae, the fracturing fluid filtration loss is large, the breakdown pressure is low, the main fracture will not open wide initially, and likely to have sand plugging. Proppant is mainly concentrated in the main hydraulic fractures with large width near the perforated layer, activated laminae, branch fractures and fractures in adjacent layers contain only a small amount of(or zero) proppant. The proppant is placed in a limited range on the whole. The limit width of fracture that proppant can enter is about 2.7 times the proppant particle size.
基金support from the National Natural Science Foundation of China (NO.10772200,10972237)the Important National Science & Technology Specific Projects of China(No.2011ZX05011)
文摘This paper discusses the effect of influencing factors on the distribution of incremental oil displaced by a polymer flood (extra-displaced oil) using numerical reservoir simulation. These factors include the location, area and permeability of a thin low-permeability interbed, and the perforation location relative to the interbed. Simulation results show the locations from where the incremental oil was displaced by the polymer solution. The interbed position from the oil formation top affects the location of extra-displaced oil. The interbed area has a slight influence on the whole shape of extra-displaced oil. Larger interbed area leads to higher partition extent of extra-displaced oil. Higher vertical permeability of interbeds contributes to worse partition extent of extra-displaced oil and the partition effect disappears if the ratio of vertical to horizontal permeability is more than 0.05. The perforation location relative to the interbed affects polymer displacement efficiency, and also has a significant effect on the distribution of extra-displaced oil in polymer flooding.
文摘利用一种长链甜菜碱表面活性剂在酸液中的聚集形态变化,形成了以土酸为主体酸的自转向酸体系:15%HCl+3%HF+4%转向剂+1%缓蚀剂+0.5%铁离子稳定剂。该体系在酸化改造过程中不需要大量钙镁离子的"交联"作用,仅依靠自身聚集形态随酸浓度的变化即可增黏,胶束平均水合直径最大可达330.5 nm,酸液黏度最大可达180 m Pa·s,能有效实现砂泥岩储层暂堵转向酸化的目的。体系缓速性能出色,酸岩反应20 min后,含转向剂的土酸酸液溶蚀率仅为13%,并且具有良好的耐高温流变性,在90℃下剪切90 min后的黏度依然保持在60m Pa·s以上。自转向酸残酸凝胶与地层原油接触120 min后,酸液黏度降至10 m Pa·s左右,能加快残酸返排。现场试验表明,自转向土酸酸液体系在砂岩储层增产效果明显。