期刊文献+
共找到1,246篇文章
< 1 2 63 >
每页显示 20 50 100
An SPH Framework for Earthquake-Induced Liquefaction Hazard Assessment of Geotechnical Structures
1
作者 Sourabh Mhaski G.V.Ramana 《Computer Modeling in Engineering & Sciences》 SCIE EI 2025年第1期251-277,共27页
Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is es... Earthquake-induced soil liquefaction poses significant risks to the stability of geotechnical structures worldwide.An understanding of the liquefaction triggering,and the post-failure large deformation behaviour is essential for designing resilient infrastructure.The present study develops a Smoothed Particle Hydrodynamics(SPH)framework for earthquake-induced liquefaction hazard assessment of geotechnical structures.The coupled flowdeformation behaviour of soils subjected to cyclic loading is described using the PM4Sand model implemented in a three-phase,single-layer SPH framework.A staggered discretisation scheme based on the stress particle SPH approach is adopted to minimise numerical inaccuracies caused by zero-energy modes and tensile instability.Further,non-reflecting boundary conditions for seismic analysis of semi-infinite soil domains using the SPH method are proposed.The numerical framework is employed for the analysis of cyclic direct simple shear test,seismic analysis of a level ground site,and liquefaction-induced failure of the Lower San Fernando Dam.Satisfactory agreement for liquefaction triggering and post-failure behaviour demonstrates that the SPH framework can be utilised to assess the effect of seismic loading on field-scale geotechnical structures.The present study also serves as the basis for future advancements of the SPH method for applications related to earthquake geotechnical engineering. 展开更多
关键词 EARTHQUAKE SEISMIC LIQUEFACTION stress particle PM4Sand smoothed particle hydrodynamics(SPH)
下载PDF
Microscopic sand production simulation and visual sanding pattern description in weakly consolidated sandstone reservoirs 被引量:5
2
作者 Chang-Yin Dong Bo Zhou +4 位作者 Fan-Sheng Huang Lei Zhang Yi-Zhong Zhao Yang Song Jun-Yu Deng 《Petroleum Science》 SCIE CAS CSCD 2022年第1期279-295,共17页
To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and p... To visually describe the sanding pattern,this study constructs a new particle-scale microstructure model of weakly consolidated formation,and develop the corresponding methodology to simulate the sanding process and predict sand cavity shape.The microstructure model is a particle-objective model,which focuses on the random sedimentation of every sand grain.In the microstructure,every particle has its own size,sphericity and inclination angle.It is used to simulate the actual structure of cemented granular materials,which considers the heterogeneity and randomness of reservoir properties,provides the initial status for subsequent sanding simulation.With the particle detachment criteria,the microscopic simulation of sanding can be visually implemented to investigate the pattern and cavity shapes caused by sand production.The results indicate that sanding always starts initially from the borehole border,and then extends along the weakly consolidated plane,showing obvious characteristic of randomness.Three typical microscopic sanding patterns,concerning pore liquefaction,pseudo wormhole and continuous collapse,are proposed to illustrate the sanding mechanism in weakly consolidated reservoirs.The nonuniformity of sanding performance depends on the heterogeneous distribution of reservoir properties,such as rock strength and particle size.Finally,the three sanding patterns are verified by visually experimental work.The proposed integrated methodology is capable of predicting and describing the sanding cavity shape of an oil well after long-term sanding production,and providing the focus objective of future sand control measure. 展开更多
关键词 Weakly consolidated reservoir Particle-scale microstructure model Microcosmic sanding process simulation Visual sanding cavity description sanding prediction Sand control optimization
下载PDF
Numerical simulation of sanding using a coupled hydro-mechanical sand erosion model 被引量:1
3
作者 Majid Fetrati Ali Pak 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第4期811-820,共10页
Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,t... Mechanical failure of materials adjacent to the production cavity and material disaggregation caused by fluid drag are considered as the most important parameters that affect sand production.In light of such factors,the coupling of two mechanisms-mechanical instability and hydrodynamic erosion-is indispensable in order to model this phenomenon successfully.This paper examines the applicability of a coupled hydro-mechanical erosion criterion for simulating sand production using the finite element method.The porous medium was considered fully saturated.The onset of sanding and production of sand were predicted by coupling mechanical failure and subsequent erosion of the grain particles utilizing a sanding model.To consider the erosion process,the Papamichos and Stavropoulou(1998)’s sand erosion criterion was incorporated into the finite element code.Arbitrary Lagrangian-Eulerian(ALE)adaptive mesh approach was used to account for large amounts of erosive material loss.Besides,in order to address the problem of severe mesh distortion,the“mesh mapping technique”was employed.Sand production in a horizontal wellbore and in a field case was simulated to demonstrate capabilities of the proposed model.In addition,principal parameters affecting sand production,including in situ stresses,cohesion,perforation orientation,and drawdown were examined.The results indicated the efficiency of the model used in evaluation of sanding in the field.Parametric studies indicated that in situ stresses and formation cohesion could be considered as dominant factors affecting the amount of sand production. 展开更多
关键词 Sand production Finite element method sanding criterion Hydro-mechanical coupling
下载PDF
Experimental modeling of sanding fracturing and conductivity of propped fractures in conglomerate:A case study of tight conglomerate of Mahu sag in Junggar Basin,NW China 被引量:1
4
作者 ZOU Yushi SHI Shanzhi +4 位作者 ZHANG Shicheng YU Tianxi TIAN Gang MA Xinfang ZHANG Zhaopeng 《Petroleum Exploration and Development》 CSCD 2021年第6期1383-1392,共10页
True tri-axial sanding fracturing experiments are carried out on conglomerate samples from the Permian Wuerhe Formation of Mahu sag,Junggar Basin,to study hydraulic fracture propagation geometry and quartz sand transp... True tri-axial sanding fracturing experiments are carried out on conglomerate samples from the Permian Wuerhe Formation of Mahu sag,Junggar Basin,to study hydraulic fracture propagation geometry and quartz sand transport in ma-trix-supported fine conglomerate and grain-supported medium conglomerate.The effect of rough fracture surface on conduc-tivity is analyzed using the 3D-printing technology to reconstruct the rough surface formed in the fractured conglomerate.The hydraulic fractures formed in the matrix-supported fine conglomerate are fairly straight,and only more tortuous when en-countering large gravels at local parts;thus,proppants can get into the fractures easily with transport distance about 70%–90%of the fracture length.By contrast,in the grain-supported medium conglomerate,hydraulic fractures tend to bypass the gravels to propagate in tortuous paths and frequently change in width;therefore,proppants are difficult to transport in these fractures and only move less than 30%of the fracture length.As the ma trix-supported fine conglomerate has high matrix content and low hardness,proppants embed in the fracture surface severely.In contrast,the grain-supported medium conglomerate has higher gravel content and hardness,so the quartz sand is crushed more severely.Under the high proppant concentration of 5 kg/m^(2),when the closure stress is increased(above 60 MPa),fractures formed in both matrix-supported fine conglomerate and grain-supported medium conglomerate decrease in width significantly,and drop 88%and 92%in conductivity respectively compared with the case under the low closure stress of 20 MPa.The field tests prove that under high closure stress above 60 MPa,using a high proportion of fine proppants with high concentration allow the proppant to move further in the fracture;meanwhile proppant places more uniformly in the ro ugh fracture,resulting in a higher fracture conductivity and an improved well per-formance. 展开更多
关键词 matrix-supported fine conglomerate grain-supported medium conglomerate sand fracturing fracture propaga-tion proppant transport fracture conductivity
下载PDF
Data-driven casting defect prediction model for sand casting based on random forest classification algorithm 被引量:1
5
作者 Bang Guan Dong-hong Wang +3 位作者 Da Shu Shou-qin Zhu Xiao-yuan Ji Bao-de Sun 《China Foundry》 SCIE EI CAS CSCD 2024年第2期137-146,共10页
The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was p... The complex sand-casting process combined with the interactions between process parameters makes it difficult to control the casting quality,resulting in a high scrap rate.A strategy based on a data-driven model was proposed to reduce casting defects and improve production efficiency,which includes the random forest(RF)classification model,the feature importance analysis,and the process parameters optimization with Monte Carlo simulation.The collected data includes four types of defects and corresponding process parameters were used to construct the RF model.Classification results show a recall rate above 90% for all categories.The Gini Index was used to assess the importance of the process parameters in the formation of various defects in the RF model.Finally,the classification model was applied to different production conditions for quality prediction.In the case of process parameters optimization for gas porosity defects,this model serves as an experimental process in the Monte Carlo method to estimate a better temperature distribution.The prediction model,when applied to the factory,greatly improved the efficiency of defect detection.Results show that the scrap rate decreased from 10.16% to 6.68%. 展开更多
关键词 sand casting process data-driven method classification model quality prediction feature importance
下载PDF
Numerical simulation on sand sedimentation and erosion characteristics around HDPE sheet sand barrier under different wind angles 被引量:1
6
作者 ZHANG Kai ZHANG Peili +3 位作者 ZHANG Hailong TIAN Jianjin WANG Zhenghui XIAO Jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第2期538-554,共17页
For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In t... For the safety of railroad operations,sand barriers are utilized to mitigate wind-sand disaster effects.These disasters,characterized by multi-directional wind patterns,result in diverse angles among the barriers.In this study,using numerical simulations,we examined the behavior of High Density Polyethylene(HDPE)sheet sand barriers under different wind angles,focusing on flow field distribution,windproof efficiency,and sedimentation erosion dynamics.This study discovered that at a steady wind speed,airflow velocity varies as the angle between the airflow and the HDPE barrier changes.Specifically,a 90°angle results in the widest low-speed airflow area on the barrier’s downwind side.If the airflow is not perpendicular to the barrier,it prompts a lateral airflow movement which decreases as the angle expands.The windproof efficiency correlates directly with this angle but inversely with the wind’s speed.Notably,with a wind angle of 90°,wind speed drops by 81%.The minimum wind speed is found at 5.1H(the sand barrier height)on the barrier’s downwind side.As the angle grows,the barrier’s windproof efficiency improves,extending its protective reach.Sedimentation is most prominent on the barrier’s downwind side,as the wind angle shifts from 30°to 90°,the sand sedimentation area on the barrier’s downwind side enlarges by 14.8H.As the angle grows,sedimentation intensifies,eventually overtakes the forward erosion and enlarges the sedimentation area. 展开更多
关键词 Multi-wind direction HDPE sheet sand barrier Numerical simulation Windproof efficiency Sedimentation erosion
下载PDF
Experimental and simulation research on hollow AZ31 magnesium alloy three-channel joint by hot extrusion forming with sand mandrel 被引量:1
7
作者 Shi Shengnan Wang Hongyu +4 位作者 Teng Fei Jiang Lei Sun Juncai Sun Jie Zhang Shunhu 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期98-109,共12页
Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the ho... Magnesium alloy is one of the lightest metal structural materials.The weight is further reduced through the hollow structure.However,the hollow structure is easily damaged during processing.In order to maintain the hollow structure and to transfer the stresses during the high temperature deformation,the sand mandrel is proposed.In this paper,the hollow AZ31 magnesium alloy three-channel joint is studied by hot extrusion forming.Sand as one of solid granule medium is used to fill the hollow magnesium alloy.The extrusion temperatures are 230℃ and 300℃,respectively.The process parameters(die angle,temperature,bottom thickness,sidewall thickness,edge-to-middle ratio in bottom,bottom shape)of the hollow magnesium alloy are analyzed based on the results of experiments and the finite element method.The results are shown that the formability of the hollow magnesium alloy will be much better when the ratio of sidewall thickness to the bottom thickness is 1:1.5.Also when edge-to-middle ratio in bottom is about 1:1.5,a better forming product can be received.The best bottom shape in these experiments will be convex based on the forming results.The grain will be refined obviously after the extrusion.Also the microstructures will be shown as streamlines.And these lines will be well agreement with the mold in the corner. 展开更多
关键词 AZ31 magnesium alloy Three-channel joint SAND Experiments and the finite element Die angle
下载PDF
Flow field, sedimentation, and erosion characteristics around folded linear HDPE sheet sand fence: Numerical simulation study 被引量:1
8
作者 ZHANG Kai ZHANG Hailong +4 位作者 TIAN Jianjin QU Jianjun ZHANG Xingxin WANG Zhenghui XIAO jianhua 《Journal of Mountain Science》 SCIE CSCD 2024年第1期113-130,共18页
Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy ... Wind and sand hazards are serious in the Milan Gobi area of the Xinjiang section of the Korla Railway. In order to ensure the safe operation of railroads, there is a need for wind and sand protection in heavily sandy areas. The wind and sand flow in the region is notably bi-directional. To shield railroads from sand, a unique sand fence made of folded linear high-density polyethylene(HDPE) is used, aligning with the principle that the dominant wind direction is perpendicular to the fence. This study employed field observations and numerical simulations to investigate the effectiveness of these HDPE sand fences in altering flow field distribution and offering protection. It also explored how these fences affect the deposition and erosion of sand particles. Findings revealed a significant reduction in wind speed near the fence corner;the minimum horizontal wind speed on the leeward side of the first sand fence(LSF) decreased dramatically from 3 m/s to 0.64 m/s. The vortex area on the LSF markedly impacted horizontal wind speeds. Within the LSF, sand deposition was a primary occurrence. As wind speeds increased, the deposition zone shrank, whereas the positive erosion zone expanded. Close to the folded corners of the HDPE sand fence, there was a notable shift from the positive erosion zone to a deposition zone. Field tests and numerical simulations confirmed the high windproof efficiency(WE) and sand resistance efficiency(SE) in the HDPE sand fence. Folded linear HDPE sheet sand fence can effectively slow down the incoming flow and reduce the sand content, thus achieving good wind and sand protection. This study provides essential theoretical guidance for the design and improvement of wind and sand protection systems in railroad engineering. 展开更多
关键词 Folded linear HDPE sheet sand fence Numerical simulation Flow field characteristics Protection benefits
下载PDF
A gated recurrent unit model to predict Poisson’s ratio using deep learning 被引量:1
9
作者 Fahd Saeed Alakbari Mysara Eissa Mohyaldinn +4 位作者 Mohammed Abdalla Ayoub Ibnelwaleed A.Hussein Ali Samer Muhsan Syahrir Ridha Abdullah Abduljabbar Salih 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第1期123-135,共13页
Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to spe... Static Poisson’s ratio(vs)is crucial for determining geomechanical properties in petroleum applications,namely sand production.Some models have been used to predict vs;however,the published models were limited to specific data ranges with an average absolute percentage relative error(AAPRE)of more than 10%.The published gated recurrent unit(GRU)models do not consider trend analysis to show physical behaviors.In this study,we aim to develop a GRU model using trend analysis and three inputs for predicting n s based on a broad range of data,n s(value of 0.1627-0.4492),bulk formation density(RHOB)(0.315-2.994 g/mL),compressional time(DTc)(44.43-186.9 μs/ft),and shear time(DTs)(72.9-341.2μ s/ft).The GRU model was evaluated using different approaches,including statistical error an-alyses.The GRU model showed the proper trends,and the model data ranges were wider than previous ones.The GRU model has the largest correlation coefficient(R)of 0.967 and the lowest AAPRE,average percent relative error(APRE),root mean square error(RMSE),and standard deviation(SD)of 3.228%,1.054%,4.389,and 0.013,respectively,compared to other models.The GRU model has a high accuracy for the different datasets:training,validation,testing,and the whole datasets with R and AAPRE values were 0.981 and 2.601%,0.966 and 3.274%,0.967 and 3.228%,and 0.977 and 2.861%,respectively.The group error analyses of all inputs show that the GRU model has less than 5% AAPRE for all input ranges,which is superior to other models that have different AAPRE values of more than 10% at various ranges of inputs. 展开更多
关键词 Static Poisson’s ratio Deep learning Gated recurrent unit(GRU) Sand control Trend analysis Geomechanical properties
下载PDF
Microscopic Analysis of Cementitious Sand and Gravel Damming Materia 被引量:1
10
作者 Ran Wang Aimin Gong +4 位作者 Shanqing Shao Baoli Qu Jing Xu Fulai Wang Feipeng Liu 《Fluid Dynamics & Materials Processing》 EI 2024年第4期749-769,共21页
The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combinat... The mechanical properties of cementitious sand and gravel damming material have been experimentally determined by means of microscopic SEM(Scanning Electron Microscopy)image analysis.The results show that the combination of fly ash and water can fill the voids in cemented sand and gravel test blocks because of the presence of hydrated calcium silicate and other substances;thereby,the compactness and mechanical properties of these materials can be greatly improved.For every 10 kg/m^(3) increase in the amount of cementitious material,the density increases by about 2%,and the water content decreases by 0.2%.The amount of cementitious material used in the sand and gravel in these tests was 80-110 kg/m^(3),the water-binder ratio was 1-1.50.Moreover,the splitting tensile strength was 1/10 of the compressive strength,and the maximum strength was 7.42 MPa at 90 d.The optimal mix ratio has been found to be 50 kg of cement,60 kg of fly ash and 120 kg of water(C50F60W120).The related dry density was 2.6 g/cm^(3),the water content was 6%,and the water-binder ratio was 1.09. 展开更多
关键词 Cementitious sand gravel material scanning electron microscopy optimal mix ratio maximum strength
下载PDF
Establishment of tensile failure induced sanding onset prediction model for cased-perforated gas wells
11
作者 Mohammad Tabaeh Hayavi Mohammad Abdideh 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2017年第2期260-266,共7页
Sand production is a challenging issue in upstream oil and gas industry,causing operational and safety problems.Therefore,before drilling the wells,it is essential to predict and evaluate sanding onset of the wells.In... Sand production is a challenging issue in upstream oil and gas industry,causing operational and safety problems.Therefore,before drilling the wells,it is essential to predict and evaluate sanding onset of the wells.In this paper,new poroelastoplastic stress solutions around the perforation tunnel and tip based on the Mohr-Coulomb criterion are presented firstly.Based on the stress models,a tensile failure induced sanding onset prediction model for cased-perforated gas wells is derived.Then the analytical model is applied to field data to verify its applicability.The results from the perforation tip tensile failure induced sanding model are very close to field data.Therefore,this model is recommended for forecasting the critical conditions of sand production analysis.Such predictions are necessary for providing technical support for sand control decision-making and predicting the production condition at which sanding onset occurs. 展开更多
关键词 Sand production Poroelastoplastic model Mohr-Coulomb criterion Gas wells Tensile failure
下载PDF
Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie
12
作者 Delong Fu Tao Zhang 《Journal of Applied Mathematics and Physics》 2015年第5期577-583,共7页
Aiming at the fracture of the bracket of sanding nozzle of CRH5 EMU bogie, the fatigue strength analysis and modal analysis of the bracket were conducted according to En13749 and BS7608 standards, and the track excita... Aiming at the fracture of the bracket of sanding nozzle of CRH5 EMU bogie, the fatigue strength analysis and modal analysis of the bracket were conducted according to En13749 and BS7608 standards, and the track excitation during the vehicle running was thoroughly analyzed. The cause leading to the fracture of the bracket was found and the bracket was redesigned. 展开更多
关键词 BRACKET of sanding NOZZLE Model ANALYSIS TRACK Excitation
下载PDF
Effect analysis of biomineralization for solidifying desert sands 被引量:2
13
作者 Linchang Miao Hengxing Wang +2 位作者 Xiaohao Sun Linyu Wu Guangcai Fan 《Biogeotechnics》 2024年第1期45-52,共8页
The sand-dust weather has become an environmental hazard in the world.However,it is still a challenge to control sandstorms and decrease sand-dust weather.The biomineralization technology for solidifying desert sands ... The sand-dust weather has become an environmental hazard in the world.However,it is still a challenge to control sandstorms and decrease sand-dust weather.The biomineralization technology for solidifying desert sands has been developed as a novel method in recent years.In this study,the wind erosion tests and verification tests of the sand solidification system were conducted via a series of laboratory experiments.The effects of sand barriers,injecting volume and concentration of the biochemical solution in the sandstorm protection were studied.Moreover,a field test of 60,000 square metres was conducted in the solidification area on both sides of the Wuma Highway in the Tengri Desert.The biomineralization technique was used to solidify sand to prevent the wind from blowing quicksand onto the newly built highway and causing accidents.Results demonstrated that the biomineralization sand solidification method had a good solidification==effect,improved the survival rate,and promoted the growth of plants in the desert.This innovative biomineralization technology is an environmentally responsible technology to control sandstorm disasters. 展开更多
关键词 DESERTIFICATION UREASE Solidification desert sand of biomineralization Combined solidification desert sand
下载PDF
Protective benefits of HDPE board sand fences in an environment with variable wind directions on Gobi surfaces:wind tunnel study
14
作者 ZHANG Kai TIAN Jianjin +4 位作者 LIU Benli ZHAO Yanhua ZHANG Hailong WANG Zhenghui DENG Yuhui 《Journal of Mountain Science》 SCIE CSCD 2024年第10期3353-3367,共15页
The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the prot... The Golmud-Korla Railway in the Gobi area faces operational challenges due to sand hazards,caused by strong and variable winds.This study addresses these challenges by conducting wind tunnel tests to evaluate the protective benefits of High Density Polyethylene(HDPE)board sand fences,focusing on their orientation relative to various wind directions(referred to as'wind angle').This study found that the size of the low-velocity zone on the leeward side of the sand fences(LSF)expanded with an increase in the wind angle(WA).At 1H(the height of the sand fence)and 2H positions on the LSF,the wind speed profiles(WSP)exhibited a segmented logarithmic growth,constrained by Z=H at varying WAs.The efficacy of the sand fence in obstructing airflow escalated as WA increased.The size of the WA has a significant impact on the protective efficiency of HDPE board sand fences.Furthermore,compared to typical sandy surfaces,the rate of sand transport across the Gobi surface diminishes more slowly with height,attributed to the gravel's rebound effect.This phenomenon allows some sand particles to bypass the fences,rendering them less effective at blocking wind and trapping sand than in sandy environments.This paper offers scientific evidence supporting the practical use and enhancement of HDPE board sand fences in varied wind conditions. 展开更多
关键词 Variable wind directions Blown sand control Wind tunnel tests HDPE board sand fences
下载PDF
Study on the clogging mechanism of punching screen in sand control by the punching structure parameters
15
作者 Fu-Cheng Deng Fu-Lin Gui +5 位作者 Bai-Tao Fan Lei Wen Sheng-Hong Chen Ning Gong Yun-Chen Xiao Zhi-Hui Xu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第1期609-620,共12页
As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and g... As an independent sand control unit or a common protective shell of a high-quality screen,the punching screen is the outermost sand retaining unit of the sand control pipe which is used in geothermal well or oil and gas well.However,most screens only consider the influence of the internal sand retaining medium parameters in the sand control performance design while ignoring the influence of the plugging of the punching screen on the overall sand retaining performance of the screen.To explore the clogging mechanism of the punching screen,this paper established the clogging mechanism calculation model of a single punching screen sand control unit by using the computational fluid mechanics-discrete element method(CFD-DEM)combined method.According to the combined motion of particles and fluids,the influence of the internal flow state on particle motion and accumulation was analyzed.The results showed that(1)the clogging process of the punching sand control unit is divided into three stages:initial clogging,aggravation of clogging and stability of clogging.In the initial stage of blockage,coarse particles form a loose bridge structure,and blockage often occurs preferentially at the streamline gathering place below chamfering inside the sand control unit.In the stage of blockage intensification,the particle mass develops into a relatively complete sand bridge,which develops from both ends of the opening to the center of the opening.In the stable plugging stage,the sand deposits show a“fan shape”and form a“V-shaped”gully inside the punching slot element.(2)Under a certain reservoir particle-size distribution,The slit length and opening height have a large influence on the permeability and blockage rate,while the slit width size has little influence on the permeability and blockage rate.The microscopic clogging mechanism and its law of the punching screen prevention unit are proposed in this study,which has some field guidance significance for the design of punching screen and sand prevention selection. 展开更多
关键词 Punching screen Plugging CFD-DEM Size parameter Sand control
下载PDF
Sand control mechanism of radial well filled with phase change material in hydrate reservoir
16
作者 Xiao-Qiang Liu Zhong-Xi Han +5 位作者 Zhi-Lin Luo Hai-Long Lu Ying Sun Qing You Tian-Kui Guo Zhan-Qing Qu 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2571-2582,共12页
Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the ... Radial well filled with phase change material has been proposed as a novel sand control method for hydrate exploitation.In order to reveal the sand control mechanism,CFD-DEM coupling method is applied to simulate the migration,settlement,and blockage processes of sand particles in the radial well.The obtained results indicate that three scenarios have been recognized for sand particles passing through sand control medium,based on the diameter ratio of sand control medium to sand particle(D_(d)):fully passing(D_(d)=8.75-22.5),partially passing and partially blocked(D_(d)=3.18-5.63),and completely blocked(D_(d)=2.18-3.21).After being captured by the sand control medium,sand particles can block pores,which increases fluid flow resistance and causes a certain pressure difference in the radial well.The pressure in the radial well should be lower than the hydrate phase equilibrium pressure during sand control design,for the purpose of promoting hydrate decomposition,and sand capture.The length of the radial well should be optimized based on the reservoir pore pressure,production pressure difference,bottom hole pressure,and the pressure gradient in the radial well.It should be noticed that the sand control medium leads to a decrease in permeability after sand particles captured.Even the permeability is reduced to several hundred millidarcy,it is still sufficient to ensure the effective flow of gas and water after hydrate decomposition.Increasing fluid velocity reduces the blocking capacity of the sand control medium,mainly because of deterioration in bridging between sand particles. 展开更多
关键词 Hydrate reservoir Sand control Radial well CFD-DEM
下载PDF
Distribution, health and ecological risk assessments of trace elements in Nigerian oil sands
17
作者 Odunayo T.Ore Festus M.Adebiyi 《Acta Geochimica》 EI CAS CSCD 2024年第1期59-71,共13页
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I... The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability. 展开更多
关键词 Biophile Chalcophile Oil sand Risk assessment Trace element
下载PDF
Formation and ecological response of sand patches in the protection system of Shapotou section of the Baotou-Lanzhou railway,China
18
作者 DUN Yaoquan QU Jianjun +4 位作者 KANG Wenyan LI Minlan LIU Bin WANG Tao SHAO Mei 《Journal of Arid Land》 SCIE CSCD 2024年第2期298-313,共16页
The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses ... The development of bare patches typically signifies a process of ecosystem degradation.Within the protection system of Shapotou section of the Baotou-Lanzhou railway,the extensive emergence of bare sand patches poses a threat to both stability and sustainability.However,there is limited knowledge regarding the morphology,dynamic changes,and ecological responses associated with these sand patches.Therefore,we analyzed the formation and development process of sand patches within the protection system and its effects on herbaceous vegetation growth and soil nutrients through field observation,survey,and indoor analysis methods.The results showed that sand patch development can be divided into three stages,i.e.,formation,expansion,and stabilization,which correspond to the initial,actively developing,and semi-fixed sand patches,respectively.The average dimensions of all sand patch erosional areas were found to be 7.72 m in length,3.91 m in width,and 0.32 m in depth.The actively developing sand patches were the largest,and the initial sand patches were the smallest.Throughout the stage of formation and expansion,the herbaceous community composition changed,and the plant density decreased by more than 50.95%.Moreover,the coverage and height of herbaceous plants decreased in the erosional area and slightly increased in the depositional lobe;and the fine particles and nutrients of soils in the erosional area and depositional lobe showed a decreasing trend.In the stabilization phases of sand patches,the area from the inlet to the bottom of sand patches becomes initially covered with crusts.Vegetation and 0-2 cm surface soil condition improved in the erosional area,but this improvement was not yet evident in the depositional lobe.Factors such as disturbance,climate change,and surface resistance to erosion exert notable influences on the formation and dynamics of sand patches.The results can provide evidence for the future treatment of sand patches and the management of the protection system of Shapotou section of the Baotou-Lanzhou railway. 展开更多
关键词 railway protection system sand patch MORPHOLOGY vegetation characteristic soil property
下载PDF
Particle size characterization and sources of sediments in the Uzhumqin sand dunes
19
作者 ZHANG Hao LIU Yang +3 位作者 DANG Xiaohong MENG Zhongju LI Shuangli GAO Yong 《Journal of Mountain Science》 SCIE CSCD 2024年第8期2631-2645,共15页
Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their s... Sediment constitutes the fundamental basis for forming and evolving aeolian geomorphology.The characteristics of sediment particle size offer insights into the development and evolution of sandy terrain,making their study critical to understanding aeolian geomorphology and sand control.In this study,we combined high-density collection of surface sediments in the Uzhumqin sand dunes and GIS spatial analysis to analyze the particle size parameters and changes in the spatial distribution of surface sediments in this region.In addition,we used an end-member analysis to identify the potential sources of the sediments.The results showed that surface sediments in the Uzhumqin sand dunes had distinct spatial distributions.Medium and coarse grain sands dominated the sediments in the dunes,and the mean grain size and the sorting coefficient generally increased along the prevailing wind direction,with high values in individual areas related to factors such as material sources and vegetation cover.Skewness was strongly influenced by factors such as landform change and human activity,and spatial variability became more complex.Kurtosis and the soil fractal dimension showed generally decreasing trends along the prevailing wind direction.With dune fixation,the contents of clay and powder particles in the soil increased;the mean particle size,the sorting coefficient,and the fractal dimension of the soil gradually increased,and the skewness and kurtosis gradually decreased.The end-member analysis results indicated the existence of five end-members(EM)in the dune sediments.EM 1 was a mixed component of wind-deposited fine sands and nearby fluvial sediments.EM 2 was the main component of sediments in the study area and was the result of sorting lake sediments by wind action and by the local topography.EM 3 may be a product of river flood deposition.EM 4 and EM 5 had coarser grain sizes.EM 4 was a lake-phase sediment product influenced by topographic and vegetation cover factors,and EM 5 was primarily a river and lake sediment product modified by weathering.The sediment particle size results from the study area indicate that the sediment in the sandy region is generally coarse due to multiple factors,including topography,climate,hydrology,and human activity.Sandy material in the study area originated from nearby,with very little sand being transported from long distances. 展开更多
关键词 SEDIMENT Particle size Spatial differences End-member analysis Uzhumqin sand dunes
下载PDF
Impact of Reservoir Heterogeneity on Bitumen Content in the Mackay River Oil Sands,Athabasca(Canada)
20
作者 YANG Xiaofa YU Diyun +6 位作者 WU Suwei REN Junhao CHENG Dingsheng HUANG Jixin YANG Chengyu MA Guoqing LI Meijun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第5期1285-1300,共16页
The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristi... The Lower Cretaceous Manville Group of Upper Mc Murray Formation is one of the main bitumen reservoirs in Athabasca.In this study,the relationship between reservoirs heterogeneity and bitumen geochemical characteristics were analyzed through core and microscopic observation,lab analysis,petrophysics and logging data.Based on the sedimentology framework,the formation environment of high-quality oil sand reservoirs and their significance for development were discussed.The results indicate that four types lithofacies were recognized in the Upper Mc Murray Formation based on their depositional characteristics.Each lithofacies reservoirs has unique physical properties,and is subject to varying degrees of degradation,resulting in diversity of bitumen content and geochemical composition.The tidal bar(TB)or tidal channel(TC)facies reservoir have excellent physical properties,which are evaluated as gas or water intervals due to strong degradation.The reservoir of sand bar(SB)facies was evaluated as oil intervals,due to its poor physical properties and weak degradation.The reservoir of mixed flat(MF)facies is composed of sand intercalated with laminated shale,which is evaluated as poor oil intervals due to its poor connectivity.The shale content in oil sand reservoir is very important for the reservoir physical properties and bitumen degradation degree.In the context of regional biodegradation,oil sand reservoirs with good physical properties will suffer from strong degradation,while oil sand reservoirs with relatively poor physical properties are more conducive to the bitumen preservation. 展开更多
关键词 oil sands reservoir heterogeneity geochemical characteristics bitumen content Upper Mc Murray Formation CANADA
下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部