A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing b...A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior.展开更多
The sand bars, in perpetual transformation, observable in the middle course of the Kasai river on the section between the city of Ilebo (pk605) to the confluence of the Loange river (pk525), pose enormous navigability...The sand bars, in perpetual transformation, observable in the middle course of the Kasai river on the section between the city of Ilebo (pk605) to the confluence of the Loange river (pk525), pose enormous navigability problems. This may be dependent on hydrosedimentological characteristics of the Kasai River. This abundance of sand thus conditions the morphology of the middle course of the Kasai River in the section under our study. It therefore constitutes sedimentary navigation obstacles. The objective of this study is the granulometric and mineralogical characterization of the bar sands of the Kasai River in this study section. Particle size analyzes reveal these are moderately well classified to well classified unimodal sands (Classification coefficient between 1.29 to 1.742) largely presenting grain size symmetry and rarely fine asymmetry (Asymmetry coefficient—Skewness between −0.197 to 0.069) with mesorkurtic and rarely leptokurtic and platykurtic acuity (Angulosity coefficient—Kurtosis between 0.814 to 1.323). All these parameters evolve in sawtooth patterns from upstream to downstream. And then, an automated mineralogical analysis of the sands of the Kasaï River using a Qemscan FEG Quanta 650 made it possible to determine a very varied mineralogical procession with a sawtooth evolution. It is largely dominated by quartz (between 93.73% and 99.07%), followed by calcite (0.01% - 2.66%), iron oxides (0.01% - 1.88%), orthoclase (0.04% - 0.99%), plagioclase (0.01% - 0.75%) and Kaolinite (0.18% - 0.71%). Finally, this mineralogical procession is characterized by a group of minerals which do not reach the threshold of 0.55% such as: illite, apatite, ilmenite, muscovite, chlorite, biotite, montmorillonite, rutile, pyrophyllite, siderite, zircon and dolomite. The evolution of the mineralogical procession of the sands of the bars is not as clear as in the case of particle size parameters.展开更多
Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this ...Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.展开更多
Faced with the proliferation of quarries extracting silty sand and river sand used in the building and public works sector in Togo, recognition of the granular properties of these materials remains a major challenge f...Faced with the proliferation of quarries extracting silty sand and river sand used in the building and public works sector in Togo, recognition of the granular properties of these materials remains a major challenge for builders. This study aims to take stock of the use of sand in construction in Togo. One hundred and eighteen (118) sand quarries in operation, including thirty-eight (38) silty sand quarries and eighty (80) river sand quarries, were identified following surveys carried out among stakeholders involved in the chain of construction on 40% of the national territory. It appears from these surveys that river sands (59.43% to 84.68%) are prioritized over silty sands (15.32% to 40.57%). Three (3) main reasons are behind the choice of sand type;namely, proximity (28%), cleanliness (25%), good appearance (25%). These three (03) reasons partly explain the strong dependence of users on the sands located in their vicinity as well as the related expenses. Thus, making data available on the characteristics of sand, the materials most used in construction in Togo, would contribute to improving the housing conditions of the Togolese population. .展开更多
The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. I...The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.展开更多
Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases...Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31.展开更多
The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture ...The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.展开更多
The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was develope...The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.展开更多
Pressure on land tenure is having a negative impact on the coconut sector, reducing farmers’ incomes. Intercropping cultivars plantain under coconut based has been considered as a solution to this problem. The aim of...Pressure on land tenure is having a negative impact on the coconut sector, reducing farmers’ incomes. Intercropping cultivars plantain under coconut based has been considered as a solution to this problem. The aim of this work is to diversify the sources of income for coconut growers. The plantain variety PITA 3, popularised by the CNRA, was grown in coconut inter-rows (PB113<sup>+</sup>), with two types of manure (chemical, organic). Six (06) treatments D1, D2, D3, D4, D5 and D6 were studied. In the tenth month after planting, treatment D3, which included banana plants fertilised with 9 kg of manure/plant, got the best agromorphological performance: height (264.08 cm), neck circumference (57.68 cm) and 12 leaves. In terms of production parameters, D3 banana plants had a shorter production cycle (347 days) and the highest diet mass (9.3 kg). However, the plants that received no fertiliser (D6) showed stunted growth and were unable to produce brunch. The fertilization of plantain with 10 t/ha of laying hen droppings permitted good development and production of plantains on tertiary sands.展开更多
Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qingha...Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.展开更多
Pore structure is the key element of tight sandstone reservoir, which restricts the accumulation and flow of oil and gas in the reservoir. At present, reservoir pore structure is the focus and difficulty of unconventi...Pore structure is the key element of tight sandstone reservoir, which restricts the accumulation and flow of oil and gas in the reservoir. At present, reservoir pore structure is the focus and difficulty of unconventional oil and gas exploration and development research. The tight sandstone reservoir in the Chang 4 + 5 member of the Upper Triassic Yanchang Formation is the main reservoir for oil and gas exploration in G area. At present, there is little research on its pore structure and fractal characteristics, which to some extent affects the progress of exploration and development. This paper selects the tight core samples of the Chang 4 + 5 member in the southern edge of the Ordos Basin, and based on the high-pressure mercury intrusion experiment, uses fractal theory to study the pore structure and fractal characteristics of the reservoir in the study area, thus providing theoretical basis for the evaluation and exploration and development of the Chang 4 + 5 tight reservoir in the G area. The research results show that the lithology of the Chang 4 + 5 tight sandstone reservoir in the southern edge of the Ordos Basin is mainly feldspathic sandstone, with the highest feldspar content, followed by quartz, and the clay mineral is mainly chlorite. The reservoir has poor physical properties and strong heterogeneity. There are three main fractal characteristics in Chang 4 + 5 reservoir in G area: the fractal curve of Type I reservoir sample is in two segments, the relatively large pore has certain fractal characteristics, the pore structure is relatively regular, and the heterogeneity is weak;Relatively small pores have no fractal characteristics and pore structure is irregular. The fractal curve of Type II reservoir samples shows a three-segment pattern, and each pore size range has certain fractal characteristics, and it gradually gets better with the increase of pore size. The fractal curve of Type III reservoir samples presents a similar one-segment pattern, and the fractal dimension exceeds the upper limit of 3. It is considered that the full pore size of this type of reservoir does not have fractal characteristics, the pore throat is completely irregular or the surface is rough, and the heterogeneity is very strong.展开更多
This work is part of an experimental contribution approach to the study of the incorporation of glass sand from the grinding of recycled glass waste in cement mortars and its influence on the physical and mechanical b...This work is part of an experimental contribution approach to the study of the incorporation of glass sand from the grinding of recycled glass waste in cement mortars and its influence on the physical and mechanical behavior of semi-rich mortars without adjuvants. For this purpose, after a physical characterization of the sands, eight (08) formulations of mortars based on cement CEM II B/L 32.5R and fine sands (0/2) of glass at mass contents of 0%, 10%, 20%, 30%, 40%, 50%, 75% and 100% of the silty sand (0/2) were made respectively to three (03) types of fine glass sand (white, brown, green) with water dosages on cement (W/C) of 0.50, 0.45, 0.40. The results obtained show that the fine sands of recycled glass have a higher water absorption than the silty sand and the physical properties of the mortars prepared are affected by the increase in the glass content. The mechanical performances are obtained for the ratio W/C = 0.50 and the formulation of glass mortars for an optimal compressive strength superior to glass-free mortar requires a substitution of 10% for fine white glass sand, 20% for sand fine green glass and 75% for fine brown glass sand. The comparative study between these different compositions of fine glass sand mortars shows that the mechanical performances of fine brown glass sand are better than other glass sands but generally remain inferior to the control mortar based on natural silty sand.展开更多
[Objective] To study the soil texture, water storage and related spectral characteristics of composited soil. [Method] 3 different ratios of composited soils was designed by using feldspathic sandstone and sand by 3 d...[Objective] To study the soil texture, water storage and related spectral characteristics of composited soil. [Method] 3 different ratios of composited soils was designed by using feldspathic sandstone and sand by 3 different ratios, 1:1(C1), 1:2(C2) and 1:5(C3), and the CK used loess soil and sand by 1:2, then the soil texture, water storage, soil and winter wheat spectral characteristic were measured and analyzed under those treatments in 2010-2013. [Result] (1) With the increasing of the plant- ing year, treatment C1, C2 and C3 all showed decreasing in the proportions of sand and increasing of silt and the CK showed decreasing of clay and increasing of sand, along 1-30 cm soil depth. Treatment C2 showed the proportion of sand, silt and clay were 76.69%, 18.72% and 4.70%, respectively. (2) The water contents of all the treatments were significant different from other in 0-60 cm soil depth, and showed increasing trend with the increasing of sand proportion. Treatment C2 had higher average water content during the 3 years than treatment CK, C1 and C3 by 21.34%, 11.59% and 3.91% in the same soil depth, respectively. (3) In 2013, the spectral reflection curve characters were similar for all treatment of winter wheat at the jointing stage and filling stage along the full-wave band (350-2 500 nm), and the reflectance was higher in the jointing stage than the filling stage; the reflection peak was found around 550 nm, a part of green light wave band. Treatment C2 showed the highest canopy that all treatments had similar spectral curves, and the relative reflectance of soil increased during 350-1 750 nm wave length along with the increase of the sand proportion; for treatment CK, C1, C2 and C3, the soil spectral reflectance (y) and wave length (x) appeared highly correlated relationships, they were y=0.18 71 In(x)-0.979 4, y=0.158 7 In(x)-0.801 2, y=0.177 1 In(x)-0.910 8 and y=0.184 5 In(x)-0.944 5, respectively. [Conclusion] Synthesizing the soil physical properties and related spectral character indices, treatment C2 generated the best combination ratio of feldspathic sandstone and sand.展开更多
The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can...The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can rest without motion. In this paper, we use existing data and aeolian physics to analyze the main factors that influence the repose angle of sand dunes, and we investigate different repose angles involving various states and types of materials. We have determined that different factors have differential influence on the magnitude of the repose angle. Our results show that for powdery (〈400-μm diameter) desert sands, the main influential factor on the magnitude of repose angle is the molecular force among particles. Particle size does not influence the repose angle of desert sands directly, but has an indirect impact by affecting the grit sphericity and surface roughness, of which the grit sphericity acts as a major factor. Even at the same average particle size, the repose angle differs with different grain compositions. Furthermore, with increasing unevenness in grain composition, the repose angle increases correspondingly. Sand texture also has a direct influence on the repose angle of desert sands. In two sand samples having the same grain composition but different textures, the repose angles may be different. Water content has a stronger influence on the repose angle than any other factor. However, the relationship between the repose angle and water content is not a simple direct proportion. In fact, with increasing water content, the repose angle first increases and then decreases. These research results will be useful for understanding the mechanisms of dune transport, variations of dune morphology, and the stability and fluidity of dune sands.展开更多
Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sand...Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.展开更多
The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands inc...The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data.展开更多
Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = ...Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated.展开更多
Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-prob...Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-probability method etc. The most favourable areas for exploration have been selected in accordance with a comprehensive scoring system. The results show:(1) For geological resources, CNPC estimate 991.18 billion tonnes of heavy oil and 501.26 billion tonnes of oil sands globally, of which technically recoverable resources of heavy oil and oil sands comprise 126.74 billion tonnes and 64.13 billion tonnes respectively. More than 80% of the resources occur within Tertiary and Cretaceous reservoirs distributed across 69 heavy oil basins and 32 oil sands basins. 99% of recoverable resources of heavy oil and oil sands occur within foreland basins, passive continental-margin basins and cratonic basins.(2) Since residual hydrocarbon resources remain following large-scale hydrocarbon migration and destruction, heavy oil and oil sands are characterized most commonly by late hydrocarbon accumulation, the same basin types and source-reservoir conditions as for conventional hydrocarbon resources, shallow burial depth and stratabound reservoirs.(3) Three accumulation models are recognised, depending on basin type: degradation along slope; destruction by uplift; and migration along faults.(4) In addition to mature exploration regions such as Canada and Venezuela, the Volga-Ural Basin and the Pre-Caspian Basin are less well-explored and have good potential for oil-sand discoveries, and it is predicted that the Middle East will be an important region for heavy oil development.展开更多
The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sand...The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.展开更多
Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sand...Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sands after fracturing.The chemical agents added to the injected water can alter the interfacial properties,which could help further enhance the oil recovery by spontaneous imbibition.This study explores the possibility of using novel chemicals to enhance oil recovery from tight sands via spontaneous imbibition.We experimentally examine the effects of more than ten different chemical agents on spontaneous imbibition,including a cationic surfactant(C12 TAB),two anionic surfactants(0242 and 0342),an ionic liquid(BMMIM BF4),a high pH solution(NaBO2),and a series of house-made deep eutectic solvents(DES3-7,9,11,and 14).The interfacial tensions(IFT)between oil phase and some chemical solutions are also determined.Experimental results indicate that both the ionic liquid and cationic surfactant used in this study are detrimental to spontaneous imbibition and decrease the oil recovery from tight sands,even though cationic surfactant significantly decreases the oil-water IFT while ionic liquid does not.The high pH NaBO2 solution does not demonstrate significant effect on oil recovery improvement and IFT reduction.The anionic surfactants(O242 and O342)are effective in enhancing oil recovery from tight sands through oil-water IFT reduction and emulsification effects.The DESs drive the rock surface to be more water-wet,and a specific formulation(DES9)leads to much improvement on oil recovery under counter-current imbibition condition.This preliminary study would provide some knowledge about how to optimize the selection of chemicals for improving oil recovery from tight reservoirs.展开更多
基金financially supported by JSPS KAKENHI Grant Number JP19K15083.
文摘A series of undrained triaxial tests was conducted to investigate the effect of crushed mudstone with the immersion-induced degradation on the liquefaction and post-liquefaction properties,and the undrained shearing behavior without precedent cyclic-loading histories of sands containing crushed mudstone.The tested materials with a main particle diameter of 2-0.85 mm were prepared by mixing sands and crushed mudstone to reach the prescribed mudstone content defined by dry mass ranging from 0% to 50%.The mixtures were subjected to immersion under a certain stress level and were subsequently tested.In addition,one-dimensional compression tests were also supplementally performed to visually observe the immersion-induced degradation of crushed mudstone.The test results mainly showed that: (1) the liquefaction resistance,the post-liquefaction undrained strength,and the undrained strength without a precedent cyclic-loading history decreased significantly with increasing mudstone content,M c ,up to 20%;(2) even a small amount of crushed mudstone affected these strengths;(3) the above-mentioned large reductions in the strengths were attributed to the immersion-induced degradation of crushed mudstone;(4) at M_(c) >20%,the liquefaction resistance increased while the significant increase in the undrained static strengths with and without precedent cyclic-loading histories was not observed;and (5) the increase in the liquefaction resistance at M_(c) >20% may have been attributed to both the gradual increase in the plasticity and the formation of the soil aggregates among deteriorated crushed mudstone,while the increase in the specimen density did not play an important role in such behavior.
文摘The sand bars, in perpetual transformation, observable in the middle course of the Kasai river on the section between the city of Ilebo (pk605) to the confluence of the Loange river (pk525), pose enormous navigability problems. This may be dependent on hydrosedimentological characteristics of the Kasai River. This abundance of sand thus conditions the morphology of the middle course of the Kasai River in the section under our study. It therefore constitutes sedimentary navigation obstacles. The objective of this study is the granulometric and mineralogical characterization of the bar sands of the Kasai River in this study section. Particle size analyzes reveal these are moderately well classified to well classified unimodal sands (Classification coefficient between 1.29 to 1.742) largely presenting grain size symmetry and rarely fine asymmetry (Asymmetry coefficient—Skewness between −0.197 to 0.069) with mesorkurtic and rarely leptokurtic and platykurtic acuity (Angulosity coefficient—Kurtosis between 0.814 to 1.323). All these parameters evolve in sawtooth patterns from upstream to downstream. And then, an automated mineralogical analysis of the sands of the Kasaï River using a Qemscan FEG Quanta 650 made it possible to determine a very varied mineralogical procession with a sawtooth evolution. It is largely dominated by quartz (between 93.73% and 99.07%), followed by calcite (0.01% - 2.66%), iron oxides (0.01% - 1.88%), orthoclase (0.04% - 0.99%), plagioclase (0.01% - 0.75%) and Kaolinite (0.18% - 0.71%). Finally, this mineralogical procession is characterized by a group of minerals which do not reach the threshold of 0.55% such as: illite, apatite, ilmenite, muscovite, chlorite, biotite, montmorillonite, rutile, pyrophyllite, siderite, zircon and dolomite. The evolution of the mineralogical procession of the sands of the bars is not as clear as in the case of particle size parameters.
文摘Darcy’s law is widely used to describe the flow in porous media in which there is a linear relationship between fluid velocity and pressure gradient. However, it has been found that for high numbers of Reynolds this law ceases to be valid. In this work, the Ergun equation is employed to consider the non-linearity of air velocity with the pressure gradient in casting sands. The contribution of non-linearity to the total flow in terms of a variable defined as a non-Darcy flow fraction is numerically quantified. In addition, the influence of the shape factor of the sand grains on the non-linear flow fraction is analyzed. It is found that for values of the Reynolds number less or equal than 1, the contribution of non-linearity for spherical particles is around 1.15%.
文摘Faced with the proliferation of quarries extracting silty sand and river sand used in the building and public works sector in Togo, recognition of the granular properties of these materials remains a major challenge for builders. This study aims to take stock of the use of sand in construction in Togo. One hundred and eighteen (118) sand quarries in operation, including thirty-eight (38) silty sand quarries and eighty (80) river sand quarries, were identified following surveys carried out among stakeholders involved in the chain of construction on 40% of the national territory. It appears from these surveys that river sands (59.43% to 84.68%) are prioritized over silty sands (15.32% to 40.57%). Three (3) main reasons are behind the choice of sand type;namely, proximity (28%), cleanliness (25%), good appearance (25%). These three (03) reasons partly explain the strong dependence of users on the sands located in their vicinity as well as the related expenses. Thus, making data available on the characteristics of sand, the materials most used in construction in Togo, would contribute to improving the housing conditions of the Togolese population. .
文摘The Nigerian oil sands represent the largest oil sand deposit in Africa, yet there is little published information on the distribution and potential health and ecological risks of trace elements in the oil resource. In the present study, we investigated the distribution pattern of 18trace elements(including biophile and chalcophile elements) as well as the estimated risks associated with exposure to these elements. The results of the study indicated that Fe was the most abundant element, with a mean concentration of 22,131 mg/kg while Br had the lowest mean concentration of 48 mg/kg. The high occurrence of Fe and Ti suggested a possible occurrence of ilmenite(Fe TiO_(3)) in the oil sands. Source apportionment using positive matrix factorization showed that the possible sources of detected elements in the oil sands were geogenic, metal production, and crustal. The contamination factor, geo-accumulation index, modified degree of contamination, pollution load index, and Nemerow pollution index indicated that the oil sands are heavily polluted by the elements. Health risk assessment showed that children were relatively more susceptible to the potentially toxic elements in the oil sands principally via ingestion exposure route(HQ > 1E-04). Cancer risks from inhalation are unlikely due to CR < 1E-06 but ingestion and dermal contact pose severe risks(CR > 1E-04). The high concentrations of the elements pose serious threats due to the potential for atmospheric transport, bioaccessibility, and bioavailability.
文摘Bamendou (West Cameroon), has a huge potential in natural resources, especially sands. However, the use of these materials in civil engineering works leads to the appearance of numerous pathologies which in some cases lead to the total ruin of the works. In order to overcome these infrastructural problems, the main objective of this study is set at the improvement of the service life of structures built in Cameroon using local materials formed under climatic, geological and geotechnical conditions similar to those of materials in Bamendou. Eight sand samples were taken from the most representative and exploited quarries. The identification and classification of the sand taken from the most representative quarries in the study area show that they are mainly clayey, with an average sand equivalent of 57.54. In terms of granulometry, the curves of several sand samples do not fall within the granular range of sands used in the formulation of concrete. The modulus of fineness obtained by particle size analysis varies from 2.91 to 3.92 with an average of 3.31.
文摘The ruin of several civil engineering works occurs due to shear rupture of the ground. When the stress is greater than the shear resistance, the internal friction angle and the cohesion of the soil loosen and rupture occurs. Cement and lime are often used to stabilize soils and improve soil strength. The costs and environmental problems of these technologies raise concerns and challenge researchers to innovate with clean, inexpensive materials, accessible to the most disadvantaged social classes. The question that this study seeks to answer is whether the binders derived from plant tannins, which also stabilize soils, improve the shear resistance of these soils. To do this, we determined for silty sand the shear parameters, notably the cohesion and the angle of internal friction in the non-stabilized state and when they are stabilized with the powder of the bark of the Bridelia under different water states. The results show that the addition of Bridelia powder to silty sand increases the cohesion of the soil by nearly 70.71% and the friction angle by 4.31%. But in unfavourable water conditions, the cohesion and internal friction angle of the silty sand material improved with Bridelia bark powder drops drastically by nearly 81.56%. but does not dissolve completely as for the same material. When it is not stabilized. This information is an invaluable contribution in the search for solutions to increase the durability of earthen constructions by improving the water-repellent properties of soils.
基金This work was financially supported by the State Key Laboratory of New Textile Materials and Advanced Processing Technologies(No.FZ2021014)the Wuhan Science and Technology Bureau Application Foundation Frontier Project(2022023988065216)+2 种基金the National Natural Science Foundation of China(J2124010,51405348,51575405)the Educational Commission of Hubei Province of China(D20171604)the Hubei Provincial Natural Science Foundation of China(2018CFB673).
文摘The bond film on the surface of the CO_(2) sodium silicate used sands is not easy to decompose,therefore,it is difficult to reclaim used sands.A new reclamation method of CO_(2) sodium silicate used sands was developed by steam leaching,which can reduce the water consumption of reclamation and improve the removal effect of sodium silicate bond film.Firstly,the leaching effect of the sodium silicate sands after 20/200/400/600/800/1,000°C heat preservation treatment was simulated.Furthermore,the influence of the leaching time on the removal effect of the sodium silicate bond film was studied.Finally,the casting properties of the reclaimed sands after the leaching reclamation treatment were tested.The results show for simulated used sands after 30 min of steam leaching,the removal ratio of the alkali exceeds 84.1%,the removal ratio of silicate is 86.2%,and the removal ratio of carbonate is 93.6%.The removal rate of alkali,silicate and carbonate is relatively low in the leaching time of 30-50 min.Considering the reclamation effect and cost,the leaching time is controlled in 30 min.Water consumption is only 60%of the mass of used sands for 30 min steam leaching,while it is 200%for wet reclamation.Morphological analysis shows that most of the hazardous substances in the used sands are removed in 30 min steam leaching,and the reclaimed sands surface after steam leaching in 50 min is as smooth as new sands.After 30 min of steam leaching,the alkali removal effect of the factory used sands can reach 81.5%,the water consumption by the steam leaching reclamation is 58%of the mass of the used sand,which is similar to the result of simulated used sands.The performance of reclaimed sands obtained after 30 min steam leaching is better than that of new sands when the amount of sodium silicate added is 6%of the mass of the reclaimed sands and the CO_(2) blowing time is 15 s:the 24 h ultimate compressive strength of reclaimed sands is 5.6 MPa(equated with new sands),and the collapsibility compressive strength is 5.2 MPa,which is lower than the collapsibility compressive strength of new sands(7.7 MPa).This indicates that the reclamation of CO_(2) sodium silicate used sands by steam leaching is a feasible method.
文摘Pressure on land tenure is having a negative impact on the coconut sector, reducing farmers’ incomes. Intercropping cultivars plantain under coconut based has been considered as a solution to this problem. The aim of this work is to diversify the sources of income for coconut growers. The plantain variety PITA 3, popularised by the CNRA, was grown in coconut inter-rows (PB113<sup>+</sup>), with two types of manure (chemical, organic). Six (06) treatments D1, D2, D3, D4, D5 and D6 were studied. In the tenth month after planting, treatment D3, which included banana plants fertilised with 9 kg of manure/plant, got the best agromorphological performance: height (264.08 cm), neck circumference (57.68 cm) and 12 leaves. In terms of production parameters, D3 banana plants had a shorter production cycle (347 days) and the highest diet mass (9.3 kg). However, the plants that received no fertiliser (D6) showed stunted growth and were unable to produce brunch. The fertilization of plantain with 10 t/ha of laying hen droppings permitted good development and production of plantains on tertiary sands.
基金Supported by the PetroChina Science and Technology Project (2021DJ0402,2021DJ0202)。
文摘Based on the data of field outcrops,drilling cores,casting thin sections,well logging interpretation,oil/gas shows during drilling,and oil/gas testing results,and combined with modern salt-lake sediments in the Qinghai Lake,the Neogene saline lake beach-bars in southwestern Qaidam Basin are studied from the perspective of sedimentary characteristics,development patterns,sand control factors,and hydrocarbon accumulation characteristics.Beach-bar sand bodies are widely developed in the Neogene saline lake basin,and they are lithologically fine sandstone and siltstone,with wavy bedding,low-angle cross bedding,and lenticular-vein bedding.In view of spatial-temporal distribution,the beach-bar sand bodies are stacked in multiple stages vertically,migratory laterally,and extensive and continuous in NW-SE trending pattern in the plane.The stacking area of the Neogene beach-bar sandstone is predicted to be 3000 km^(2).The water salinity affects the sedimentation rate and offshore distance of beach-bar sandstone,and the debris input from the source area affects the scale and enrichment of beach-bar sandstone.The ancient landform controls the morphology and stacking style of beach-bar sandstone,and the northwest monsoon driving effect controls the long-axis extension direction of beach-bar sandstone.The beach-bars have a reservoir-forming feature of“one reservoir in one sand body”,with thick beach-bar sand bodies controlling the effective reservoir distribution and oil-source faults controlling the oil/gas migration and accumulation direction.Three favorable exploration target zones in Zhahaquan,Yingdong-eastern Wunan and Huatugou areas are proposed based on the analysis of reservoir-forming elements.
文摘Pore structure is the key element of tight sandstone reservoir, which restricts the accumulation and flow of oil and gas in the reservoir. At present, reservoir pore structure is the focus and difficulty of unconventional oil and gas exploration and development research. The tight sandstone reservoir in the Chang 4 + 5 member of the Upper Triassic Yanchang Formation is the main reservoir for oil and gas exploration in G area. At present, there is little research on its pore structure and fractal characteristics, which to some extent affects the progress of exploration and development. This paper selects the tight core samples of the Chang 4 + 5 member in the southern edge of the Ordos Basin, and based on the high-pressure mercury intrusion experiment, uses fractal theory to study the pore structure and fractal characteristics of the reservoir in the study area, thus providing theoretical basis for the evaluation and exploration and development of the Chang 4 + 5 tight reservoir in the G area. The research results show that the lithology of the Chang 4 + 5 tight sandstone reservoir in the southern edge of the Ordos Basin is mainly feldspathic sandstone, with the highest feldspar content, followed by quartz, and the clay mineral is mainly chlorite. The reservoir has poor physical properties and strong heterogeneity. There are three main fractal characteristics in Chang 4 + 5 reservoir in G area: the fractal curve of Type I reservoir sample is in two segments, the relatively large pore has certain fractal characteristics, the pore structure is relatively regular, and the heterogeneity is weak;Relatively small pores have no fractal characteristics and pore structure is irregular. The fractal curve of Type II reservoir samples shows a three-segment pattern, and each pore size range has certain fractal characteristics, and it gradually gets better with the increase of pore size. The fractal curve of Type III reservoir samples presents a similar one-segment pattern, and the fractal dimension exceeds the upper limit of 3. It is considered that the full pore size of this type of reservoir does not have fractal characteristics, the pore throat is completely irregular or the surface is rough, and the heterogeneity is very strong.
文摘This work is part of an experimental contribution approach to the study of the incorporation of glass sand from the grinding of recycled glass waste in cement mortars and its influence on the physical and mechanical behavior of semi-rich mortars without adjuvants. For this purpose, after a physical characterization of the sands, eight (08) formulations of mortars based on cement CEM II B/L 32.5R and fine sands (0/2) of glass at mass contents of 0%, 10%, 20%, 30%, 40%, 50%, 75% and 100% of the silty sand (0/2) were made respectively to three (03) types of fine glass sand (white, brown, green) with water dosages on cement (W/C) of 0.50, 0.45, 0.40. The results obtained show that the fine sands of recycled glass have a higher water absorption than the silty sand and the physical properties of the mortars prepared are affected by the increase in the glass content. The mechanical performances are obtained for the ratio W/C = 0.50 and the formulation of glass mortars for an optimal compressive strength superior to glass-free mortar requires a substitution of 10% for fine white glass sand, 20% for sand fine green glass and 75% for fine brown glass sand. The comparative study between these different compositions of fine glass sand mortars shows that the mechanical performances of fine brown glass sand are better than other glass sands but generally remain inferior to the control mortar based on natural silty sand.
基金Supported by the Special Fund for the Scientific Research in Public Interest of the Ministry of Land and Resources(201411008)~~
文摘[Objective] To study the soil texture, water storage and related spectral characteristics of composited soil. [Method] 3 different ratios of composited soils was designed by using feldspathic sandstone and sand by 3 different ratios, 1:1(C1), 1:2(C2) and 1:5(C3), and the CK used loess soil and sand by 1:2, then the soil texture, water storage, soil and winter wheat spectral characteristic were measured and analyzed under those treatments in 2010-2013. [Result] (1) With the increasing of the plant- ing year, treatment C1, C2 and C3 all showed decreasing in the proportions of sand and increasing of silt and the CK showed decreasing of clay and increasing of sand, along 1-30 cm soil depth. Treatment C2 showed the proportion of sand, silt and clay were 76.69%, 18.72% and 4.70%, respectively. (2) The water contents of all the treatments were significant different from other in 0-60 cm soil depth, and showed increasing trend with the increasing of sand proportion. Treatment C2 had higher average water content during the 3 years than treatment CK, C1 and C3 by 21.34%, 11.59% and 3.91% in the same soil depth, respectively. (3) In 2013, the spectral reflection curve characters were similar for all treatment of winter wheat at the jointing stage and filling stage along the full-wave band (350-2 500 nm), and the reflectance was higher in the jointing stage than the filling stage; the reflection peak was found around 550 nm, a part of green light wave band. Treatment C2 showed the highest canopy that all treatments had similar spectral curves, and the relative reflectance of soil increased during 350-1 750 nm wave length along with the increase of the sand proportion; for treatment CK, C1, C2 and C3, the soil spectral reflectance (y) and wave length (x) appeared highly correlated relationships, they were y=0.18 71 In(x)-0.979 4, y=0.158 7 In(x)-0.801 2, y=0.177 1 In(x)-0.910 8 and y=0.184 5 In(x)-0.944 5, respectively. [Conclusion] Synthesizing the soil physical properties and related spectral character indices, treatment C2 generated the best combination ratio of feldspathic sandstone and sand.
基金supported by the National Natural Science Foundation of China (Grant No. 50879033)the National Science Fund for Fostering Talents in Basic Research of the National Natural Science Foundation of China (Grant No.J0730536)
文摘The repose angle is one of the most significant macroscopic parameters in describing the behavior of granular materials. Under a static condition, the repose angle is the steepest angle at which sediment particles can rest without motion. In this paper, we use existing data and aeolian physics to analyze the main factors that influence the repose angle of sand dunes, and we investigate different repose angles involving various states and types of materials. We have determined that different factors have differential influence on the magnitude of the repose angle. Our results show that for powdery (〈400-μm diameter) desert sands, the main influential factor on the magnitude of repose angle is the molecular force among particles. Particle size does not influence the repose angle of desert sands directly, but has an indirect impact by affecting the grit sphericity and surface roughness, of which the grit sphericity acts as a major factor. Even at the same average particle size, the repose angle differs with different grain compositions. Furthermore, with increasing unevenness in grain composition, the repose angle increases correspondingly. Sand texture also has a direct influence on the repose angle of desert sands. In two sand samples having the same grain composition but different textures, the repose angles may be different. Water content has a stronger influence on the repose angle than any other factor. However, the relationship between the repose angle and water content is not a simple direct proportion. In fact, with increasing water content, the repose angle first increases and then decreases. These research results will be useful for understanding the mechanisms of dune transport, variations of dune morphology, and the stability and fluidity of dune sands.
基金supported by Major National Oil & Gas Specific Project(Grant No.2008ZX05020-001)
文摘Pore-structure poses great influence on the permeability and electrical property of tight sand reservoirs and is critical to the petrophysical research of such reservoirs.The uncertainty of permeability for tight sands is very common and the relationship between pore- structure and electrical property is often unclear.We propose a new parameterδ,integrating porosity,maximum radius of connected pore-throats,and sorting degree,for investigating the permeability and electrical properties of tight sands.Core data and wireline log analyses show that this newδcan be used to accurately predict the tight sands permeability and has a close relation with electrical parameters,allowing the estimation of formation factor F and cementation exponent m.The normalization of the resistivity difference caused by the pore- structure is used to highlight the influence of fluid type on Rt,enhancing the coincidence rate in the Pickett crossplot significantly.
基金Project (50971087) supported by the National Natural Science Foundation of ChinaProject (11JDG070) supported by the Senior Talent Research Foundation of Jiangsu University, China
文摘The effects of different cooling conditions on the mechanical properties and microstructures of a Sr-modified A356 (Al-7Si-0.3Mg) aluminum casting alloy were comparatively investigated using three moulding sands including quartz, alumina and chromite into multi-step blocks. The results show that the mechanical properties and microstructures using chromite sand are the best. As the cooling speed increases, the dendrite arm spacing (DAS) decreases significantly and the mechanical properties are improved, and the elongation is more sensitive to the cooling speed as compared with the tensile strength. The increase of the properties is primarily attributed to the decrease of the DAS and the increase of the free strontium atoms in the matrix. In particular, the regression models for predicting both the tensile strength and the elongation for Sr-modified A356 aluminum casting alloy were established based on the experimental data.
基金financially supported by the National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,Aeronautical Science Foundation of China(Grant No.2011ZE56007)the Natural Science Foundation of Jiangxi Province(Grant No.2010GZC0159)the High Technology Landing Program of Jiangxi University(Grant No.DB201303014)
文摘Baozhu sand particles with size between 75 μm and 150 μm were coated by resin with the ratio of 1.5 wt.% of sands. Laser sintering experiments were carried out to investigate the effects of laser energy density(E = P/v), with different laser power(P) and scanning velocity(v), on the dimensional accuracy and tensile strength of sintered parts. The experimental results indicate that with the constant scanning velocity, the tensile strength of sintered samples increases with an increase in laser energy density; while the dimensional accuracy apparently decreases when the laser energy density is larger than 0.032 J·mm-2. When the laser energy density is 0.024 J·mm-2, the tensile strength shows no obvious change; but when the laser energy density is larger than 0.024 J·mm-2, the sample strength is featured by the initial increase and subsequent decrease with simultaneous increase of both laser power and scanning velocity. In this study, the optimal energy density range for laser sintering is 0.024-0.032 J·mm-2. Moreover, samples with the best tensile strength and dimensional accuracy can be obtained when P = 30-40 W and v = 1.5-2.0 m·s-1. Using the optimized laser energy density, laser power and scanning speed, a complex coated sand mould with clear contour and excellent forming accuracy has been successfully fabricated.
基金Major Special Program of National Science and Technology in 13th Five year plan(Grant No.ZX201605029)
文摘Global recoverable resources of heavy oil and oil sands have been assessed by CNPC using a geology-based assessment method combined with the traditional volumetric method, spatial interpolation method, parametric-probability method etc. The most favourable areas for exploration have been selected in accordance with a comprehensive scoring system. The results show:(1) For geological resources, CNPC estimate 991.18 billion tonnes of heavy oil and 501.26 billion tonnes of oil sands globally, of which technically recoverable resources of heavy oil and oil sands comprise 126.74 billion tonnes and 64.13 billion tonnes respectively. More than 80% of the resources occur within Tertiary and Cretaceous reservoirs distributed across 69 heavy oil basins and 32 oil sands basins. 99% of recoverable resources of heavy oil and oil sands occur within foreland basins, passive continental-margin basins and cratonic basins.(2) Since residual hydrocarbon resources remain following large-scale hydrocarbon migration and destruction, heavy oil and oil sands are characterized most commonly by late hydrocarbon accumulation, the same basin types and source-reservoir conditions as for conventional hydrocarbon resources, shallow burial depth and stratabound reservoirs.(3) Three accumulation models are recognised, depending on basin type: degradation along slope; destruction by uplift; and migration along faults.(4) In addition to mature exploration regions such as Canada and Venezuela, the Volga-Ural Basin and the Pre-Caspian Basin are less well-explored and have good potential for oil-sand discoveries, and it is predicted that the Middle East will be an important region for heavy oil development.
基金Project (2007CB714006) supported by the National Basic Research Program of China
文摘The discrete element method (DEM) was used to simulate the flow characteristic and strength characteristic of the conditioned sands in the earth pressure balance (EPB) tunneling. In the laboratory the conditioned sands were reproduced and the slump test and the direct shear test of the conditioned sands were implemented. A DEM equivalent model that can simulate the macro mechanical characteristic of the conditioned sands was proposed,and the corresponding numerical models of the slump test and the shear test were established. By selecting proper DEM model parameters,the errors of the slump values between the simulation results and the test results are in the range of 10.3%-14.3%,and the error of the curves between the shear displacement and the shear stress calculated with the DEM simulation is 4.68%-16.5% compared with that of the laboratory direct shear test. This illustrates that the proposed DEM equivalent model can approximately simulate the mechanical characteristics of the conditioned sands,which provides the basis for further simulation of the interaction between the conditioned soil and the chamber pressure system of the EPB machine.
基金support provided through a NSERC Discovery Grant(No:RES0011227)to T.Babadaglia NSERC Discovery Grant(No:NSERC RGPIN 05394)to H.Li+3 种基金financial supports provided by National Natural Science Foundation of China(No:51874240)National Science and Technology Major Project(No:2016ZX05047003-004)the Key Laboratory Fund of Education Department of Shaanxi Province(No:15JS086)Ph.D.Scholarship from the China Scholarship Council(CSC)(201806450029)for the financial support.
文摘Tight sands are abundant in nanopores leading to a high capillary pressure and normally a low fluid injectivity.As such,spontaneous imbibition might be an effective mechanism for improving oil recovery from tight sands after fracturing.The chemical agents added to the injected water can alter the interfacial properties,which could help further enhance the oil recovery by spontaneous imbibition.This study explores the possibility of using novel chemicals to enhance oil recovery from tight sands via spontaneous imbibition.We experimentally examine the effects of more than ten different chemical agents on spontaneous imbibition,including a cationic surfactant(C12 TAB),two anionic surfactants(0242 and 0342),an ionic liquid(BMMIM BF4),a high pH solution(NaBO2),and a series of house-made deep eutectic solvents(DES3-7,9,11,and 14).The interfacial tensions(IFT)between oil phase and some chemical solutions are also determined.Experimental results indicate that both the ionic liquid and cationic surfactant used in this study are detrimental to spontaneous imbibition and decrease the oil recovery from tight sands,even though cationic surfactant significantly decreases the oil-water IFT while ionic liquid does not.The high pH NaBO2 solution does not demonstrate significant effect on oil recovery improvement and IFT reduction.The anionic surfactants(O242 and O342)are effective in enhancing oil recovery from tight sands through oil-water IFT reduction and emulsification effects.The DESs drive the rock surface to be more water-wet,and a specific formulation(DES9)leads to much improvement on oil recovery under counter-current imbibition condition.This preliminary study would provide some knowledge about how to optimize the selection of chemicals for improving oil recovery from tight reservoirs.