The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studi...The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.展开更多
It is difficult to identify and predict non-marine deep water sandstone reservoir facies and thickness,using routine seismic analyses in the Xingma area of the western Liaohe sag,due to low dominant frequencies,low si...It is difficult to identify and predict non-marine deep water sandstone reservoir facies and thickness,using routine seismic analyses in the Xingma area of the western Liaohe sag,due to low dominant frequencies,low signal-to-noise ratios,rapid lateral changes and high frequencies of layered inter-bedding.Targeting this problem,four types of frequency spectral decomposition techniques were tested for reservoir prediction.Among these,the non-orthogonal Gabor-Morlet wavelet frequency decomposition method proved to be the best,was implemented directly in our frequency analysis and proved to be adaptable to non-stationary signals as well.The method can overcome the limitations of regular spectral decomposition techniques and highlights local features of reservoir signals.The results are found to be in good agreement with well data.Using this method and a 3-D visualization technology, the distribution of non-marine deep water sandstone reservoirs can be precisely predicted.展开更多
Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field ...Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.展开更多
基金supported by the Key Technology and Demonstration of Damaged Ecosystem Restoration and Reconstruction in Shanxi–Shaanxi–Inner Mongolia Energy Base Location (KZCX2-XB3-13-02)
文摘The infiltration of water into soil is one of the most important soil physical properties that affect soil erosion and the eco-environment, especially in the Pisha sandstone area on the Chinese Loess Plateau. We studied the one-dimensional vertical infiltration of water in three experimental soils, created by mixing Pisha sandstone with sandy soil, irrigation-silted soil, and loessial soil, at mass ratios of 1:1, 1:2, 1:3, 1:4, and 1:5. Our objective was to compare water infiltration in the experimental soils and to evaluate the effect of Pisha sandstone on water infiltration. We assessed the effect by measuring soil bulk density(BD), porosity, cumulative infiltration, infiltration rate and saturated hydraulic conductivity(Ks). The results showed that Pisha sandstone decreased the infiltration rate and saturated hydraulic conductivity in the three experimental soils. Cumulative infiltration over time was well described by the Philip equation. Sandy soil mixed with the Pisha sandstone at a ratio of 1:3 had the best water-holding capacity. The results provided experimental evidence for the movement of soil water and a technical support for the reconstruction and reclamation of mining soils in the Pisha sandstone area.
文摘It is difficult to identify and predict non-marine deep water sandstone reservoir facies and thickness,using routine seismic analyses in the Xingma area of the western Liaohe sag,due to low dominant frequencies,low signal-to-noise ratios,rapid lateral changes and high frequencies of layered inter-bedding.Targeting this problem,four types of frequency spectral decomposition techniques were tested for reservoir prediction.Among these,the non-orthogonal Gabor-Morlet wavelet frequency decomposition method proved to be the best,was implemented directly in our frequency analysis and proved to be adaptable to non-stationary signals as well.The method can overcome the limitations of regular spectral decomposition techniques and highlights local features of reservoir signals.The results are found to be in good agreement with well data.Using this method and a 3-D visualization technology, the distribution of non-marine deep water sandstone reservoirs can be precisely predicted.
基金Project(2013CB036003)supported by the National Basic Research,Program of ChinaProject(2010QNA54)Fundamental Research Funds for the Central Universities,ChinaProject supported by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘Significant changes in spontaneous potential and exciting currents are observed during water and grout injection in a simulated porous media. Obvious correlations between the seepage flow field and the electric field in the porous media are identified.In this work, a detailed experimental study of geoelectric field variation occurring in water migration was reported by analyzing water and grout injection processes in a simulated porous media. The spontaneous potential varies linearly with the thickness of unsaturated porous media. Very interestingly, the spontaneous potential generated in the second grout injection exhibits some"memory" of previous grouting paths. The decreases in spontaneous potential observed during grout injection is very probably due to that the spontaneous potential variations are primarily caused by electro-filtration potential, as indicated by the far larger viscosity of grout compared to that of water. The geoelectric response can be utilized to effectively identify the grouting paths in water-bearing rocks.