期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
The Relationship between Jurassic Coal Measures and Sandstone-type Uranium Deposits in the Northeastern Ordos Basin,China 被引量:27
1
作者 JIAO Yangquan WU Liqun +3 位作者 RONG Hui PENG Yunbiao MIAO Aisheng WANG Xiaoming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2117-2132,共16页
Outcrop and drill hole data show that the Jurassic coal measures in the northeastern Ordos Basin are composed mainly of the Yan’an Formation and the lowstand system tract of the Zhiluo Formation, and there is a regio... Outcrop and drill hole data show that the Jurassic coal measures in the northeastern Ordos Basin are composed mainly of the Yan’an Formation and the lowstand system tract of the Zhiluo Formation, and there is a regional unconformity between them. The Dongsheng uranium deposit is associated with the Jurassic coal measures. Research data indicate that the Jurassic coal measures in the study area have a certain hydrocarbon-generating capacity, although the metamorphic grade is low (Ro=0.40%–0.58%). In the Dongsheng region alone, the accumulative amount of generated coalbed methane (CBM) is about 2028.29 × 108 –2218.72 × 108 m3; the residual amount is about 50.92 × 108 m3, and the lost amount is about 1977 × 108 m3. Analysis of the burial history of the host rocks and the evolutionary history of the Dongsheng uranium deposit suggests that the Jurassic coal measures generated hydrocarbon mainly from Middle Jurassic to Early Crataceous, which is the main mineralization phase of the Dongsheng uranium deposit. By the Late Cretaceous, a mass of CBM dissipated due to the strong tectonic uplift, and the Dongsheng uranium deposit stepped into the preservation phase. Therefore, the low-mature hydrocarbon-containing fluid in the Jurassic coal measures not only served as a reducing agent for the formation of sandstone-type uranium deposits, but also rendered the second reduction of paleo-interlayer oxidation zone and become the primary reducing agent for ore conservation. Regional strata correlation reveals that the sandstone-type uranium reservoir at the bottom of the Zhiluo Formation is in contact with the underlying industrial coal seams in the Yan’an Formation through incision or in the form of an unconformity surface. In the Dongsheng region with poorly developed fault systems, the unconformity surface and scour surface served as the main migration pathways for low-mature hydrocarbon-containing fluid migrating to the uranium reservoir. 展开更多
关键词 low-rank coalbed methane sandstone-type uranium deposit Yan’an Formation Zhiluo Formation Ordos Basin
下载PDF
Application of Optically Stimulated Luminescence Technique in Exploring a Concealed Sandstone-type Uranium Deposit 被引量:1
2
作者 KANG Huan CHEN Yuelong +3 位作者 XUE Guoliang ZHAO Junxiang ZHANG Na ZHANG Yangyang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2022年第2期571-581,共11页
Identifying ore-induced geochemical anomalies at the surface that indicate concealed deposits in buried areas remains a significant challenge in geochemical exploration. In this study, in order to trace the source of ... Identifying ore-induced geochemical anomalies at the surface that indicate concealed deposits in buried areas remains a significant challenge in geochemical exploration. In this study, in order to trace the source of the geochemical anomalies, systematic luminescence intensity analyses were conducted on quartz grains from the Quaternary regolith at the Hadatu sandstone-type uranium deposit in the Erenhot Basin. The optically stimulated luminescence(OSL) ages were much older than the depositional ages of the Quaternary regolith. Moreover, quartz OSL ages were closely related to both borehole grades and sampling depths. Thus, the abnormal mineral OSL ages from near-surface sediments were ultimately controlled by the sandstone-type uranium deposits. This is identical to the rapid changes of quartz OSL ages(0.063 ka/cm) and equivalent doses(0.19 Gy/cm) with depths in a given sampling site. The instantaneous soil radon concentration was positively correlated with the quartz OSL apparent age, indicating their ore-induced origin and, as a result, their effectiveness in the exploration of concealed uranium deposits. Other parameters, including mobile-state uranium and;Po contents, were poorly correlated with quartz OSL ages and therefore should only be used with caution for geochemical exploration. This is the first time an attempt has been made to discriminate the ore-induced sources for different surface anomaly parameters, including instantaneous soil radon, mobile-state uranium and;Po contents for concealed sandstonetype uranium deposits. 展开更多
关键词 OSL dating geochemical anomaly ore-induced anomaly concealed sandstone-type uranium deposit
下载PDF
Tests on Application of Soil Magnetic and Integrated Gamma Ray TLD and TC Methods to the Exploration of Sandstone-Type Uranium Deposits 被引量:1
3
作者 ZOU Ligui ZHANG Jiyun +1 位作者 YAN Jun GUAN Shaobin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第2期418-424,共7页
This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved ... This paper introduces the test results of the soil magnetic survey and the integrated gamma-ray TLD and TC methods for sandstone-type uranium exploration and describes the prospecting mechanism. The tests have proved that these approaches have yielded good results on classifying the sedimentary facies, defining the redox transitional zones and reflecting deep mineralization information. They may probably become new methods on searching for sandstone-type uranium deposits. 展开更多
关键词 soil magnetism gamma-ray thermoluminescence dosimetry total count rate of gamma ray sandstone-type uranium deposit
下载PDF
Research on diagenesis of the sandstone-type uranium deposits in Dongsheng area, Ordos Basin 被引量:6
4
作者 FAN AiPing LIU YiQun YANG RenChao FENG Qiao ZHANG FuXin HAN ZuoZhen 《Science China Earth Sciences》 SCIE EI CAS 2007年第z2期195-202,共8页
Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were us... Synthetic methods of thin section petrography, scanning electron microscope, electron microprobe, energy spectrum analysis, cathodoluminescence, isotopic analysis and temperature measuring for fluid inclusions were used in analyzing sandstone samples collected from the Zhiluo Formation in order to fully understand the diagenesis evolution and the mineralizing response as well as the genesis of the uranium-bearing sandstone in Dongsheng area. The result shows that (1) the sandstone include lithic silicarenite, feldspathic litharenite and litharenite; (2) the authigenic minerals include clay minerals, carbonate minerals, siliceous and ferric minerals; (3) the physical property of sandstone is obviously controlled by diagenesis; and (4) the sandstone with favorable physical property is propitious to migration and storage of ore-forming fluid, and finally, forming the ore deposit. The sandstone of the Zhiluo Formation had undergone the early diagenetic stage (periods A and B) and the epidiagenetic stage. The evolution of diagenetic environment is in the order of acidic oxidation, alkalescent deoxidization, acidity to transitional environment of oxidation-deoxidization and acidity-alkalescence. The uranium exists in forms of pre-enrichment uranyl ion, active uranyl ion, dispersive adsorptive uranium and uranium mineral, respectively. In addition, the authors also hold that the formation of the sandstone-type uranium is not only related to the oxidation-deoxidization environment, but also closely related to the acidic-alkaline transitional environment, which are propitious to uranium mineralization in sandstone. 展开更多
关键词 ORDOS Basin Dongsheng area sandstone-type uranium DIAGENESIS
原文传递
Structure Styles of Mesozoic-Cenozoic U-bearing Rock Series in Northern China 被引量:12
5
作者 JIN Ruoshi MIAO Peisen +8 位作者 SIMA Xianzhang LI Jianguo ZHAO Hualei ZHAO Fengqing FEN Xiaoxi CHEN Yin CHEN Lulu ZHAO Lijun ZHU Qiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第6期2104-2116,共13页
In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedi... In Northern China, sandstone-type uranium (U) deposits are mostly developed in Mesozoic-Cenozoic basins. These U deposits are usually hosted in unvarying horizons within the basins and exhibit typical U-forming sedimentary associations, which is referred to as U-bearing rock series. This study describes the structural features of U-bearing rock series within the main Mesozoic-Cenozoic U-producing continental basins in Kazakhstan, Uzbekistan, and Russia in the western segment of the Central Asian Metallogenic Belt (CAMB), and Northern China in the eastern segment of the CAMB. We analyze the basic structural conditions and sedimentary environments of U-bearing rock series in Northern China and classify their structural styles in typical basins into river valley, basin margin, and intrabasin uplift margin types. The intrabasin uplift margin structural style proposed in this study can be used to indicate directions for the exploration of sandstone-type U deposits hosted in the center of a basin. At the same time, the study of structural style provides a new idea for exploring sandstone-type U deposits in Mesozoic-Cenozoic basins and it is of great significance to prospecting of sandstone-type uranium deposits. 展开更多
关键词 sandstone-type uranium deposit U-bearing rock series structural style intrabasin uplift margin type Mesozoic-Cenozoic continental basin
下载PDF
Elemental Geochemistry of the Interlayer Oxidation Zonein the Shihongtan Sandstone Type Uranium Deposit, Xinjiang 被引量:4
6
作者 CAI Genqing ZHANG Zimin LI Shengxiang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2005年第6期835-842,共8页
According to the oxidation intensity of ore-hosting sandstone, the interlayer oxidation zone of the Shihongtan sandstone-type uranium deposit in the Turpan-Hami basin can be divided into 4 geochemical subzones, namely... According to the oxidation intensity of ore-hosting sandstone, the interlayer oxidation zone of the Shihongtan sandstone-type uranium deposit in the Turpan-Hami basin can be divided into 4 geochemical subzones, namely, intenselyoxidized, weakly-oxidized, redox and unoxidized primary subzones. The elemental geochemical characteristics of the four subzones have been studied in detail, and the results show that U, together with other elements such as Re, Mo, Se, Sr, S, REE, Corganic etc., is enriched in the redox subzone. Re and U have similar geochemical properties in the reductionoxidation process. The geochemical properties of Mo and Se are similar to those of U in the reduction condition, but different from those of U in the oxidation condition. It is proposed that the ore-hosting layers can provide a curtain mount of uranium for uranium mineralization. 展开更多
关键词 sandstone-type uranium deposit interlayer oxidation zone geochemical subzone Shihongtan uranium deposit
下载PDF
Evolution of Tectonic Uplift, Hydrocarbon Migration, and Uranium Mineralization in the NW Junggar Basin: An Apatite Fission-Track Thermochronology Study 被引量:8
7
作者 QIN Mingkuan HUANG Shaohua +4 位作者 HE Zhongbo XU Qiang SONG Jiye LIU Zhangyue GUO Qiang 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第5期1901-1916,共16页
The Mesozoic–Cenozoic tectonic movement largely controls the northwest region of the Junggar Basin(NWJB), which is a significant area for the exploration of petroleum and sandstone-type uranium deposits in China. T... The Mesozoic–Cenozoic tectonic movement largely controls the northwest region of the Junggar Basin(NWJB), which is a significant area for the exploration of petroleum and sandstone-type uranium deposits in China. This work collected six samples from this sedimentary basin and surrounding mountains to conduct apatite fission track(AFT) dating, and utilized the dating results for thermochronological modeling to reconstruct the uplift history of the NWJB and its response to hydrocarbon migration and uranium mineralization. The results indicate that a single continuous uplift event has occurred since the Early Cretaceous, showing spatiotemporal variation in the uplift and exhumation patterns throughout the NWJB. Uplift and exhumation initiated in the northwest and then proceeded to the southeast, suggesting that the fault system induced a post spread-thrust nappe into the basin during the Late Yanshanian. Modeling results indicate that the NWJB mountains have undergone three distinct stages of rapid cooling: Early Cretaceous(ca. 140–115 Ma), Late Cretaceous(ca. 80–60 Ma), and Miocene–present(since ca. 20 Ma). These three stages regionally correspond to the LhasaEurasian collision during the Late Jurassic–Early Cretaceous(ca. 140–125 Ma), the Lhasa-Gandise collision during the Late Cretaceous(ca. 80–70 Ma), and a remote response to the India-Asian collision since ca. 55 Ma, respectively. These tectonic events also resulted in several regional unconformities between the J3/K1, K2/E, and E/N, and three large-scale hydrocarbon injection events in the Piedmont Thrust Belt(PTB). Particularly, the hydrocarbon charge event during the Early Cretaceous resulted in the initial inundation and protection of paleo-uranium ore bodies that were formed during the Middle–Late Jurassic. The uplift and denudation of the PTB was extremely slow from 40 Ma onward due to a slight influence from the Himalayan orogeny. However, the uplift of the PTB was faster after the Miocene, which led to re-uplift and exposure at the surface during the Quaternary, resulting in its oxidation and the formation of small uranium ore bodies. 展开更多
关键词 apatite fission track tectonic uplift hydrocarbon migration sandstone-type uranium deposit NW Junggar Basin
下载PDF
Uranium Provinces in China 被引量:7
8
作者 CHEN Zhaobo ZHAO Fengmin +1 位作者 XIANG Weidong CHEN Yuehui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2000年第3期587-594,共8页
Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise go... Three uranium provinces are recognized in China, the Southeast China uranium province, the Northeast China-Inner Mongolia uranium province and the Northwest China (Xinjiang) uranium province. The latter two promise good potential for uranium resources and are major exploration target areas in recent years. There are two major types of uranium deposits: the Phanerozoic hydrothermal type (vein type) and the Meso-Cenozoic sandstone type in different proportions in the three uranium provinces. The most important reason or prerequisite for the formation of these uranium provinces is that Precambrian uranium-enriched old basement or its broken parts (median massifs) exists or once existed in these regions, and underwent strong tectonomagmatic activation during Phanerozoic time. Uranium was mobilized from the old basement and migrated upwards to the upper structural level together with the acidic magma originating from anatexis and the primary fluids, which were then mixed with meteoric water and resulted in the formation of Phanerozoic hydrothermal uranium deposits under extensional tectonic environments. Erosion of uraniferous rocks and pre-existing uranium deposits during the Meso-Cenozoic brought about the removal of uranium into young sedimentary basins. When those basins were uplifted and slightly deformed by later tectonic activity, roll-type uranium deposits were formed as a result of redox in permeable sandstone strata. 展开更多
关键词 uranium province Phanerozoic hydrothermal(vein-type)uranium deposit Meso-Cenozoic sandstone-type uranium deposit genesis of uranium province
下载PDF
Association of Sandstone-Type Uranium Mineralization in the Northern China with Tectonic Movements and Hydrocarbons 被引量:2
9
作者 Yin Chen Peisen Miao +6 位作者 Jianguo Li Ruoshi Jin Hualei Zhao Lulu Chen CongWang HaoyuYu Xiaoru Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期289-307,共19页
In the continental basins of Northern China(NC),a series of energy resources commonly co-exist in the same basin.As the three typical superimposed basins of different genesis in the NC,the Junggar,Ordos,and Songliao b... In the continental basins of Northern China(NC),a series of energy resources commonly co-exist in the same basin.As the three typical superimposed basins of different genesis in the NC,the Junggar,Ordos,and Songliao basins were chosen as the research objects.The favorable uraniumbearing structures are generally shown as a basin-margin slope or transition belt of uplifts with the development of faults,which are conducive to a fluid circulation system.The Hercynian,Indosinian,and Yanshanian movements resulted in the development of uranium-rich intrusions which acted as the significant uranium sources.The main hydrocarbon source rocks are developed in the Carboniferous,Permian,Jurassic and Cretaceous.The mature stage of source rocks is concentrated in the Jurassic–Cretaceous,followed by the multi-stage expulsion events.Influenced by the India-Eurasian collision and the subduction of the Pacific Plate,the tectonic transformation in the Late Yanshanian and Himalayan periods significantly influenced the sandstone-type uranium mineralization.The hydrocarbon reservoirs are spatially consistent with sandstone-type uranium deposits,while the hydrocarbon expulsion events occur in sequence with sandstone-type uranium mineralization.In the periphery of the faults or the uplifts,both fluids met and formed uranium concentration.The regional tectonic movements motivate the migration of hydrocarbon fluids and uranium mineralization,especially the Himalayan movement. 展开更多
关键词 sandstone-type uranium deposits Northern China hydrocarbon reservoirs tectonic evolution FLUID ore deposit geology
原文传递
Genesis of green sandstone/mudstone from Middle Jurassic Zhiluo Formation in the Dongsheng Uranium Orefield, Ordos Basin and its enlightenment for uranium mineralization 被引量:16
10
作者 Ruo-shi Jin Xiao-xi Feng +9 位作者 Xue-ming Teng Feng-jun Nie Hai-yang Cao Hui-qun Hou Hong-xu Liu Pei-sen Miao Hua-lei Zhao Lu-lu Chen Qiang Zhu Xiao-xi Zhou 《China Geology》 2020年第1期52-66,共15页
The middle Jurassic Zhiluo Formation in the Dongsheng is comprised of a big set of green sandstone/mudstone with most of uranium orebodies occurring in close proximity to its footwall.By synthesizing field observation... The middle Jurassic Zhiluo Formation in the Dongsheng is comprised of a big set of green sandstone/mudstone with most of uranium orebodies occurring in close proximity to its footwall.By synthesizing field observations,region analysis,data collected from previous coal and uranium borehole,a regional north-south geological profile across the entire orefield is conducted.Experiments on sandstone/mudstone including rock mineral identification,clastic micromorphology and element geochemistry were carried out.Information from the geological profile indicates that green sandstone/mudstone is widely present in a stable horizon with clear boundaries to the country rock.Microscopic observations and geochemical data on sandstone/mudstone exhibit similar mineral composition with almost identical slightly flat,minor Eu enriched,Ce depleted chondrite-normalized REE patterns.Furthermore,the green clay membrane of the clasts has a complex composition containing chlorite/smectite,green smectite,chlorite,and green kaolinite,with elements including Fe,Mg,Si,and Al.These above results indicate that the green sandstone/mudstone underwent resemble sedimentary diagenetic processes as the country rock without transformation by large-scale regional fluid,while the existence of Fe2+-rich membrane is the main factor to the green sandstone/mudstone.Further concentration of the pre-enrichment uranium during diagenetic process led to the final formation for uranium deposits.The above studies are conducive to enrich the metallogenic mechanism of sandstone type uranium deposits and could provide certain reference for uranium exploration and deployment. 展开更多
关键词 sandstone-type uranium deposit Green sandstone/mudstone DIAGENESIS Zhiluo Formation Minerral exploration engineering Ordos Basin Inner Mongolia China
下载PDF
Factors influencing in-situ leaching of uranium mining in a sandstone deposit in Shihongtan, Northwest China 被引量:2
11
作者 LIU Jin-hui SUN Zhan-xue +1 位作者 SHI Wei-jun ZHOU Yi-peng 《Journal of Groundwater Science and Engineering》 2015年第1期16-20,共5页
The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting... The Shihongtan uranium deposit in northwest China is a sandstone-type deposit suitable for alkaline in-situ leaching exploitation of uranium. Alkaline leaching tends to result in CaCO3 precipitation there by affecting the porosity of the ore-bearing aquifer. CaCO3 deposits can also block pumping and injection holes if the formulation parameters of the leaching solution are not well controlled. However, controlling these parameters to operate the in-situ leaching process is challenging. Our study demonstrates that the dissolved uranium concentration in the leaching solution increases as HCO3-concentration increases. Therefore, the most suitable HCO3-concentration to use as leaching solution is defined by the boundary value of the HCO3-concentration that controls CaCO3 dissolution-precipitation. That is, the dissolution and precipitation of calcite is closely related to pH, Ca2+ and HCO3-concentration. The pH and Ca2+ concentration are the main factors limiting HCO3-concentration in the leaching solution. The higher the pH and Ca2+ concentration, the lower the boundary value of HCO3-concentration, and therefore the more unfavorable to in-situ leaching of uranium. 展开更多
关键词 sandstone-type uranium deposit In-situ leaching Boundary value Saturation index
下载PDF
Theoretical System of Sandstone-Type Uranium Deposits in Northern China 被引量:3
12
作者 Ruoshi Jin Huajian Liu Xiaoguang Li 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期257-277,共21页
Many theoretical results on sandstone-type uranium mineralization in northern China obtained by the uranium research team of the Tianjin Center of Geological Survey in recent years are presented.From the source sink s... Many theoretical results on sandstone-type uranium mineralization in northern China obtained by the uranium research team of the Tianjin Center of Geological Survey in recent years are presented.From the source sink system of uranium-producing basins,sedimentary environment of uranium-bearing rock series,ore-forming fluid information,evolution of tectonic events,basin formation and development,we redefine and classify uranium orebodies,redox zoning,and ore-controlling structural styles.We then systematically propose a theoretical system of sandstone-type uranium deposits in northern China.We conclude that sandstone-type uranium deposits in northern China are mainly found in sedimentary environments such as rivers,deltas,and alluvial fans in the Mesozoic and Cenozoic lowstand systems tract and in gray sandstone layers in the vertical redox zoning.The orebodies are controlled by the tectonic slope belt,which is in the shape of a strip on the plane,and spreads in a layer or plate on the section.Vertical(ups and downs)tectonic movement triggers large-scale phreatic flow in the basin,which is the real driving force for controlling the ore-forming fluid.The theoretical system of sandstone-type uranium deposits in northern China should be based on global tectonic movement and environmental changes and take into account factors such as basins as a unit to study mineralization background,ore concentration areas as objects to study mineralization,and the correlation between regional tectonic movement and metallogenic process as a breakthrough point to study tectonic events and metallogenic events.It should also be based on different basin types to establish metallogenic models.The innovative research results and ideas are summarized with the aim of promoting the continuous improvement of sandstone-type uranium mineralization theory in northern China. 展开更多
关键词 theoretical system metallogenic background MINERALIZATION metallogenic model vertical(ups and downs)tectonic movement sandstone-type uranium deposits ore deposit geology
原文传递
Uranium mineralization formed through multi-stage superposition: Case of the Qianjiadian deposit in Songliao Basin, China 被引量:1
13
作者 Zhenyan Chen Qingchun Li +3 位作者 Mingyi Liu Bairong Song Minqiang Cao Miao Wang 《Energy Geoscience》 2021年第1期32-40,共9页
The Qianjiadian uranium deposit is located in the Kailu Depression of Songliao Basin.It is a large-scale in-situ leachable uranium deposit of sandstone type and provides a typical case of the uranium deposits in the S... The Qianjiadian uranium deposit is located in the Kailu Depression of Songliao Basin.It is a large-scale in-situ leachable uranium deposit of sandstone type and provides a typical case of the uranium deposits in the Songliao Basin.Here we analyze the impact of oil and gas on reduction alteration,and factors including low grade mineralization.The Qianjiadian uranium deposit is characterized as a typical rolltype deposit with interlayers in oxidized zone.The occurrence of reductive low-permeability sandstone in uranium reservoirs controls the morphology of the uranium-rich orebody.We propose a metallogenic model involving multi-stage superposition characterized by“primary sediment enrichment-interlayer oxidation-superimposed transformation”.Our model would be helpful for formulating guidelines in the exploration for sandstone-type uranium deposits in the Songliao Basin. 展开更多
关键词 Qianjiadian uranium deposit sandstone-type uranium deposit Interlayer oxidation Hydrothermal transformation Metallogenic model
下载PDF
Genesis of Xinzhai Sandstone-Type Copper Deposit in Northern Laos: Geological and Geochemical Evidences
14
作者 Jianguo Huang Tao Ren Haijun Zou 《Journal of Earth Science》 SCIE CAS CSCD 2019年第1期95-108,共14页
Xinzhai sandstone-type copper deposit located in northern Laos lies in the Jiangcheng-Phongsaly-Phrae Mesozoic basin(JPMB), which is regarded as southern extension of the Lanping-Simao Mesozoic basin in China. The cop... Xinzhai sandstone-type copper deposit located in northern Laos lies in the Jiangcheng-Phongsaly-Phrae Mesozoic basin(JPMB), which is regarded as southern extension of the Lanping-Simao Mesozoic basin in China. The copper deposit belt is bounded by the AilaoshanHeishui River fault and the Dian Bien Phu-Luang Prabang fault at the east and Lancang RiverBannankan faults at the west. Two types of orebodies are identified in the Xinzhai area based on geological investigation. One is lamellar copper orebody hosted by the fine lithic feldspar sandstones and feldspar lithic sandstones; another is vein-type orebody. The sulfur isotopic compositions of the chalcopyrite and tetrahedrite are from -11.6‰ to -1.8‰, indicating that sulfur is derived from bacterial sulfate reduction(BSR). δD values of fluid inclusions in ore-bearing quartz samples are from -99‰ to -78‰. The calculated δ^(18)OH_2O values of ore-forming fluid vary from -2.3‰ to 0.4‰ using the quartz-water fractionation equations and the mineralization temperature. Oxygen and hydrogen isotopic compositions show that the ore-forming fluid was derived from basin fluid. Rock-mineral identifications show that both of the mineral grain maturity and the structural maturity are high in the Jurassic Huakaizuo Formation, reflecting a far-source accumulation and lake facies sedimentatary environment. Based on tectonic determination diagram of the Al_2O_3/SiO_2-TFe+MgO, the sandstone samples collected from the Huakaizuo Formation were plotted in the passive continental margin. The collision of the Indian and Eurasian blocks during the Cenozoic formed large-scale strikeslips and thrust nappe structures in margin of the basin. With the tectonic movement, Cu-rich basin fluid from the basement of basin migrated upward along the contemporaneous fault and into the high porosity strata. At the same time, in organic matter-riched condition, bacterial sulfate reduction(BSR) has been triggered, forming a large number of S^(2-) ions, and then precipitation of sulfide started. This mechanism describes the process of copper mineral deposition in the Xinzhai deposit. 展开更多
关键词 Laos sandstone-type copper DEPOSIT GEOLOGY GEOCHEMISTRY GENESIS
原文传递
Geological and Geochemical Characteristics of the Zhiluo Formation in the Bayinqinggeli Uranium Deposit, Northern Ordos Basin: Significance for Uranium Mineralization
15
作者 CAI Yuqi HAN Meizhi +5 位作者 ZHANG Chuang YI Chao LI Xiaocui ZHANG Yan WANG Gui LI Huaming 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第6期2075-2086,共12页
The Bayinqinggeli deposit in the northern Ordos Basin, northwestern of China, is a recently discovered sandstone-type uranium deposit. The uranium(U) orebodies are generally hosted in the lower member of the Jurassic ... The Bayinqinggeli deposit in the northern Ordos Basin, northwestern of China, is a recently discovered sandstone-type uranium deposit. The uranium(U) orebodies are generally hosted in the lower member of the Jurassic Zhiluo Formation(Fm.), and are primarily tabular or irregular in shape. In the study area, 23 sandstone samples were collected from the Zhiluo Fm. and analyzed for major, trace, and rare earth elements(REEs). The geochemical characteristics of these sandstones are used to evaluate the factors controlling U mineralization. The source rocks of the Zhiluo Fm. sandstones are mainly volcanic and felsic magmatic rocks formed in continental arc and active continentalmarginal arc environments, and they provided the material required for the mineralization. The index of compositional variability ranges from 1.02 to 3.29(average1.38), indicating that the Zhiluo Fm. sandstones are immature and composed of first-cycle sediments. The corrected chemical index of alteration averages 56, suggesting that the source rocks underwent weak chemical weathering. The ore host rocks are loose, providing favorable conditions for epigenetic oxidation and U precipitation and enrichment. Ferrous iron in minerals such as chlorite, biotite, ilmenite, and pyrite might have played a role either in adsorbing or reducing the uranium. 展开更多
关键词 sandstone-type uranium deposit Zhiluo Formation Bayinqinggeli ORDOS
下载PDF
Uranium Isotope Variations(234U/238U and 238U/235U)and Behavior of U-Pb Isotope System in the Vershinnoe Sandstone-Type Uranium Deposit,Vitim Uranium Ore District,Russia
16
作者 V.N.Golubev I.V.Chernyshev +3 位作者 B.T.Kochkin N.N.Tarasov G.V.Ochirova A.V.Chugaev 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期317-324,共8页
The U-Pb isotope system and uranium isotope composition(235U/238U and 234U/238U)were studied in a number of samples from the vertical section of the uranium ore body at the Vershinnoe sandstone-type deposit,Vitim uran... The U-Pb isotope system and uranium isotope composition(235U/238U and 234U/238U)were studied in a number of samples from the vertical section of the uranium ore body at the Vershinnoe sandstone-type deposit,Vitim uranium ore district,Russia.These parameters were determined to broadly vary.Deviations of the 234U/238U ratio from the equilibrium value indicate that the uranium ore was not completely conserved during the postore stage,and uranium was determined to continue migrating at the deposit.Comparison of the U-Pb isotope age value and 234U/238U isotope ratio provides an insight into the migrate direction of uranium in the ore body.The broad variations(137.377–137.772)in the 238U/235U ratio over the vertical section of the ore body can be explained by the different settings of the samples relative to the ore deposition front and changes in the redox conditions when this front shifted.The fact that theδ238U and K234/238 values are correlated indicates that the transfer of the 234U isotope into the aqueous phase may have been coupled with isotope fractionation in the 238U-235U system during the postformation uranium migration within the orebody. 展开更多
关键词 sandstone-type uranium deposit U-Pb age uranium isotope composition ore deposit geology
原文传递
Origin of gray-green sandstone in ore bed of sandstone type uranium deposit in north Ordos Basin 被引量:20
17
作者 LI ZiYing FANG XiHeng CHEN AnPing OU GuangXi XIAO XinJian SUN Ye LIU ChiYang WANG Yi 《Science China Earth Sciences》 SCIE EI CAS 2007年第z2期165-173,共9页
Dongsheng sandstone-type uranium deposit is located in the northern part of Ordos Basin, occurring in the transitional zones between gray-green and gray sandstones of Jurassic Zhiluo Formation. Sandstones in oxidized ... Dongsheng sandstone-type uranium deposit is located in the northern part of Ordos Basin, occurring in the transitional zones between gray-green and gray sandstones of Jurassic Zhiluo Formation. Sandstones in oxidized zone of the ore bed look gray-green, being of unique signature and different from one of ordinary inter-layered oxidation zone of sandstone-type uranium deposits. The character and origin of gray-green sandstones are systematically studied through their petrology, mineralogy and geochemistry. It is pointed out that this color of sandstones is originated from secondary oil-gas reduction processes after paleo-oxidation, being due to acicular-leaf chlorite covering surfaces of the sandstone grains. To find out the origin of gray-green sandstone and recognize paleo-oxidation zones in the ore bed are of not only theoretical significance for understanding metallogenesis of this kind of sandstone-type uranium deposit, but also very importantly practical significance for prospecting for similar kind of sandstone-type uranium deposit. 展开更多
关键词 ORDOS Basin sandstone-type URANIUM deposit gray-green sandstone oil-gas ORIGIN
原文传递
Characteristics and dynamic settings of the Central-east Asia multi-energy minerals metallogenetic domain 被引量:13
18
作者 LIU ChiYang QIU XinWei WU BoLin ZHAO HongGe 《Science China Earth Sciences》 SCIE EI CAS 2007年第z2期1-18,共18页
That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil, gas,... That more than 82 percent of proved sandstone-type uranium deposits coexist with proved oil-gas or coalfields in the world reflects the fact of coexistence and accumulation of multi-energy minerals including oil, gas, coal and uranium in the same basin. Especially, this phenomenon is most typical in the Central-east Asia energy basins. Across China, Mongolia and some central Asian countries, the giant Central-east Asia metallogenetic domain (CEAMD) stretches more than 6,000 km from Songliao Basin of China in the east to the Caspian Sea in the west. The multi-energy minerals distribution characteristics of the domain include: their spatial distribution is complicated and ordered; the ore-bearing horizon relates closely to the geographical region; the accumulation/mineralization and localization time is the same or close; the occurrence setting and accumulation/mineralization have close correlation; and they have rich provenance for all the minerals. All of these imply that they have close relations between each other under a unified geodynamic background. The exogenetic uranium mineralization process in CEAMD can be divided into five phases using time limits of 100 Ma, (50±2) Ma, 20±(2―4) Ma, 8―5 Ma. The major mineralization periods and their differences in each primary uranium-bearing basin are identical to the oil-gas accumulation and localization periods and phases in the same basin, and are also in response to regional tectonics and controlled in general by the regional geodynamic environment. For industrial application and commercial exploitation, it is suggested that an important period for coexistence, accumulation and localization of oil, gas, coal and uranium and their interaction mainly occur in the late/last and post basin evolution. Through generalized analysis and comparison of accumulation/mineralization environment of the energy basins in CEAMD, the authors propose that the relatively stable regional tectonic background and moderate (weaker) structural deformation probably are necessary for formation, coexistence and preservation of large and medium-scaled sandstone-type uranium ore deposits, oil-gas fields and coalfields, while basins in favor of coexistence and accumulation are those intracratonal, intermediary massif basins and corresponding reformed basins. 展开更多
关键词 Central-east Asia energy MINERALS METALLOGENETIC domain oil-gas-coal and sandstone-type uranium ore deposit coexistence in the SAME basin accumulation/mineralization mechanism BASIN dynamics
原文传递
Markers and Genetic Mechanisms of Primary and Epigenetic Oxidation of an Aeolian Depositional System of the Luohandong Formation,Ordos Basin 被引量:1
19
作者 Yao Xiang Yangquan Jiao +2 位作者 Liqun Wu Hui Rong Fan Zhang 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期358-372,共15页
Uranium exploration breakthrough was extremely rare in an aeolian depositional system.In order to know the complicate characteristics of oxidation associated closely with uranium mineralization in the aeolian depositi... Uranium exploration breakthrough was extremely rare in an aeolian depositional system.In order to know the complicate characteristics of oxidation associated closely with uranium mineralization in the aeolian depositional system,petrology and mineralogy markers of the oxidation and its genetic mechanisms are identified and illustrated by fieldwork,thin section analysis and scanning electron microscopy test,based on 2 field outcrops in Zhenyuan County in the southwest of the Tianhuan depression in the Ordos Basin and the core of 2 wells in the north and south of Ordos Basin.The results showed:the typical macroscopic indicator of primary oxidation was the red fine sediments in the aeolian interdune with a thickness of 10-50 cm,and the microscopic characteristics of primary oxidation were the minerals such as hematite,ilmenite,and the irony matrix rich in fine-grained dolomite and biotite;the phreatic oxidation was manifested as the red sandstone with limonite horizontal layer with a thickness of 1-4 cm and a width of 60 cm-1 m,and the circular limonite nodules with a diameter of 3-7 cm,in which there was intergranular limonite cement;the interlayer oxidation was characterized by lenticular tongue and tapered red sandstone with a length of 1-10 m and a width of 10 cm-5m,in which detrital particles are coated with hematite and hematite was distributed inside the rhombus dolomite.The paleoclimate of the sedimentary period,the water-table movement and the pore and permeability conditions of the sand body were the key factors for the formation of different oxidation types in the aeolian depositional system. 展开更多
关键词 Ordos Basin aeolian depositional system primary oxidation epigenetic oxidation sandstone-type uranium exploration ore deoposit geology
原文传递
Uranium Metallogeny in Fault-Depression Transition Region:A Case Study of the Tamusu Uranium Deposit in the Bayingobi Basin 被引量:1
20
作者 Liqun Wu Yangquan Jiao +1 位作者 Yunbiao Peng Hui Rong 《Journal of Earth Science》 SCIE CAS CSCD 2022年第2期409-421,共13页
Compared to the sandstone-type uranium deposits in the Ordos Basin and the Songliao Basin,the Tamusu uranium deposit in the Bayingobi Basin formed in fault-depression transition region displays distinctive features.Fi... Compared to the sandstone-type uranium deposits in the Ordos Basin and the Songliao Basin,the Tamusu uranium deposit in the Bayingobi Basin formed in fault-depression transition region displays distinctive features.First,the uranium-bearing sandstones and their interlayer oxidation zone extend longitudinally no more than ten kilometers.Second,gravity flow sediments are more common in the uranium-bearing strata.Comprehensive facies analysis indicates that the Upper Member(orebearing horizon)of the Bayingobi Formation was largely deposited in fan deltas that prograded into lakes during period of relatively dry paleoclimate.Spatial distribution patterns of five facies associations along with two depositional environments(fan delta,lake)were reconstructed in this study.The results demonstrated that the depositional systems and their inner genetic facies played different roles in uranium reservoir sandstone,confining beds(isolated barrier beds)and reduction geologic bodies during uranium mineralization process. 展开更多
关键词 sandstone-type uranium deposit fan delta lake fault-depression transition Tamusu uranium deposit Bayingobi Basin ore deposit geology
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部