期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
Flexural Properties of Grooved Perforation Sandwich Composites
1
作者 方海 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2010年第4期583-587,共5页
Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structur... Selecting H-60 PVC foam, four-axis E-glass non-woven fabric and vinyl resin, a type of innovative reinforced sandwich composite as grooved perforation sandwich (GPS) were fabricated by VIMP. The interfacial structure between the face and core of the sandwich is innovative because of the acuminate grooves in both sides of foam core and the holes perforated along core’s height. The fabrication results show that VIMP is a high-speed and cost-effective manufacturing method. The mechanical properties of the reinforced foam core were tested. The typical flexural failure modes of sandwich specimens were observed. The flexural stiffness and ultimate bearing capacity of sandwich were studied by ordinary sandwich beam theory and finite element method. 展开更多
关键词 vacuum infusion molding process (VIMP) grooved perforation sandwich (GPS) sandwich composite flexural properties
下载PDF
Low-Velocity Impact Response of Stitched Multi-layer Foam Sandwich Composites
2
作者 张利鹏 李睿龙 +1 位作者 王晓旭 洪锦放 《Journal of Donghua University(English Edition)》 CAS 2022年第6期573-580,共8页
Low-velocity impact damage known as“imperceptible”damage usually destroys the structural integrity of the material and seriously affects the service life of the materials.To improve the low-velocity impact resistanc... Low-velocity impact damage known as“imperceptible”damage usually destroys the structural integrity of the material and seriously affects the service life of the materials.To improve the low-velocity impact resistance of foam sandwich composites,an innovative concept of a stitched multi-layer sandwich structure by organically combining the discrete splitting of foam layer with full thickness stitching was proposed,and its low-velocity impact resistance obtained through drop-hammer impact tests was explored.The results showed that the multi-layer foam sandwich structure acted as a stress disperser and reduced the irreversible impact damage.The depth and area of low-velocity impact damage of multi-layer foam sandwich composites gradually decreased with increasing the number of the layers.The stitched structure would improve the integrity of the foam sandwich composites and inhibit the propagation of cracks.The maximum impact load of the stitched foam sandwich composite increased by approximately 5% compared with that of the non-stitched material.In addition,the low-velocity impact damage depth,damage area and absorbed energy of the stitched three-layer foam sandwich composite were reduced by 37.7%,34.6% and 20.7%,respectively,compared with those of the non-stitched single-layer sandwich material. 展开更多
关键词 foam sandwich composite STITCHING multi-layer sandwich low-velocity impact
下载PDF
Least Square Finite Element Model for Analysis of Multilayered Composite Plates under Arbitrary Boundary Conditions
3
作者 Christian Mathew Yao Fu 《World Journal of Engineering and Technology》 2024年第1期40-64,共25页
Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, ani... Laminated composites are widely used in many engineering industries such as aircraft, spacecraft, boat hulls, racing car bodies, and storage tanks. We analyze the 3D deformations of a multilayered, linear elastic, anisotropic rectangular plate subjected to arbitrary boundary conditions on one edge and simply supported on other edge. The rectangular laminate consists of anisotropic and homogeneous laminae of arbitrary thicknesses. This study presents the elastic analysis of laminated composite plates subjected to sinusoidal mechanical loading under arbitrary boundary conditions. Least square finite element solutions for displacements and stresses are investigated using a mathematical model, called a state-space model, which allows us to simultaneously solve for these field variables in the composite structure’s domain and ensure that continuity conditions are satisfied at layer interfaces. The governing equations are derived from this model using a numerical technique called the least-squares finite element method (LSFEM). These LSFEMs seek to minimize the squares of the governing equations and the associated side conditions residuals over the computational domain. The model is comprised of layerwise variables such as displacements, out-of-plane stresses, and in- plane strains, treated as independent variables. Numerical results are presented to demonstrate the response of the laminated composite plates under various arbitrary boundary conditions using LSFEM and compared with the 3D elasticity solution available in the literature. 展开更多
关键词 Multilayered composite and sandwich Plate Transverse Stress Continuity Condition Arbitrary Boundary Condition Layerwise Theory Least-Squares Formulation
下载PDF
Three-dimensional general magneto-electro-elastic finite element model for multiphysics nonlinear analysis of layered composites
4
作者 Zheng GONG Yinxiao ZHANG +1 位作者 Ernian PAN Chao ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第1期53-72,共20页
In this paper,by defining a general potential energy for the multiphase coupled multiferroics and applying the minimum energy principle,the coupled governing equations are derived.This system of equations is then disc... In this paper,by defining a general potential energy for the multiphase coupled multiferroics and applying the minimum energy principle,the coupled governing equations are derived.This system of equations is then discretized as a general three-dimensional(3D)finite element(FE)model based on the COMSOL software.After validating the formulation,it is then applied to the analysis and design of the common sandwich structure of multiferroics composites.Under the typical static loading,the effects of general lateral boundary conditions,material grading,nonlinearity,as well as polarization orientation on the composites are analyzed.For the magneto-electro-elastic(MEE)sandwich made of piezoelectric BaTiO_(3)and magnetostrictive CoFe_(2)O_(4)with different stacking sequences,various interesting features are observed which should be very helpful for the design of high-performance multiphase composites. 展开更多
关键词 MULTIFERROICS sandwich composite magneto-electro-elastic(MEE)material multilayered plate nonlinear behavior
下载PDF
NONLINEAR BUCKLING BEHAVIOR OF DAMAGED COMPOSITE SANDWICH PLATES CONSIDERING THE EFFECT OF TEMPERATURE-DEPENDENT THERMAL AND MECHANICAL PROPERTIES 被引量:2
5
作者 Bai Ruixiang Chen Haoran (State Key Laboratory of Structural Analysis for Industrial Equipment, Dalian University of Technology, Dalian 116024, China) 《Acta Mechanica Solida Sinica》 SCIE EI 2001年第2期155-160,共6页
On the basis of the first-order shear deformation plate theory andthe zig-zag deformation as- sumption, an incremental finite elementformulation for nonlinear buckling analysis of the composite sandwichplate is deduce... On the basis of the first-order shear deformation plate theory andthe zig-zag deformation as- sumption, an incremental finite elementformulation for nonlinear buckling analysis of the composite sandwichplate is deduced and the temperature-dependent thermal and mechanicalproperties of composite is consid- ered. A finite element method forthermal or thermo-mechanical coupling nonlinear buckling analysis ofthe composite sandwich plate with an interfacial crack damage betweenface and core is also developed. 展开更多
关键词 composite sandwich plate interfacial crack damage nonlinear thermalbuckling behavior
下载PDF
Development of Composite Cellular Cores for Sandwich Panels Based on Folded Polar Quadra-Structures 被引量:1
6
作者 Valelltin Khaliulin Wang Zhijin Elena Gershtein 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI CSCD 2016年第5期519-528,共10页
An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented.Polar folded quadra-structures are regarded as a geometric basis for these cores whose standard frag... An idea to develop a family of cellular cores for sandwich panels using a technology of prepreg folding is presented.Polar folded quadra-structures are regarded as a geometric basis for these cores whose standard fragment has the fourth degree of axial symmetry.The classification of the polar structures are described and a method of various quadra-structure synthesis is developed.A possibility to provide high strength of the structure due to preservation of faces reinforcement pattern is presented.Arrangement of the plane core on a bi-curvature surface is also introduced.Besides,provision of isotropy of the core in two or three directions are described.Finally,examples of cellular folded cores manufactured from basalt reinforced plastic are demonstrated. 展开更多
关键词 composite sandwich panel cellular core folded polar quadra-structure synthesis of cellular structure quadra-structure classification
下载PDF
A Mini Review on Natural Fiber Honeycomb (NFH) Sandwiched Structure Composite: Flexural Perfomance Perspective 被引量:1
7
作者 Nahiyan Al-Azad Evelynda Christy Mojutan Mohd. Kamal Mohd. Shah 《Journal of Materials Science and Chemical Engineering》 2021年第5期1-10,共10页
Natural Fiber Honeycomb (NFH) sandwiched structure composite is a type of composite that uses natural fiber as the reinforcement material and honeycomb structure in the form of a sandwich panel. The demand for commerc... Natural Fiber Honeycomb (NFH) sandwiched structure composite is a type of composite that uses natural fiber as the reinforcement material and honeycomb structure in the form of a sandwich panel. The demand for commercial use of natural fiber-based composites is increasing in the past few years in many industrial sectors. The increase in popularity of natural fibers is because of their particular properties, price, health benefits, and recyclability. This paper aims to analyze the data and analysis of the past research about NFH sandwiched structure composite in terms of the materials used to make the NFH, the physical and mechanical properties, and their applications. Based on the literature review conducted, there were many types of materials used to make the NFH sandwiched structure composite. Some experimental tests were planned and conducted to analyze the mechanical properties of the NFH and its potential to be used in the desired industries. However, there are not many implementations of NFH composite in the construction industry. This is due to the concern related to the issue of the structural integrity of the NFH composite. From the literature review conducted, most of the research shows a positive analysis of the mechanical properties and the potential of the developed NFH to be used for the targeted industry in the study. Therefore, it can be observed that the material used in this study has a high potential to be used in the construction industry. 展开更多
关键词 Natural Fiber Honeycomb Flexural Performance sandwiched Structure composite
下载PDF
Sandwich Magnetoelectric Composites of Polyvinylidene Fluoride,Tb-Dy-Fe Alloy,and Lead Zireonate Titanate
8
作者 赵广辉 熊传溪 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2007年第4期596-599,共4页
The novel sandwich composites were prepared by sandwiching a polyvinylidene fluoride/Tb- Dy-Fe alloy composite (PVDF/Terfenol-D) between polyvinylidene fluoride/lead zirconate titanate composites (PVDF/PZT). The m... The novel sandwich composites were prepared by sandwiching a polyvinylidene fluoride/Tb- Dy-Fe alloy composite (PVDF/Terfenol-D) between polyvinylidene fluoride/lead zirconate titanate composites (PVDF/PZT). The maximum magnetoelectric effect voltage coefficient, (dE/dn)33max, of the sandwich composites is higher than that of three-phase composites at their own optimal loading level of Terfenol-D. This is attributed to less interface relaxations of strain and better polarization of the sandwich composites. When the volume fraction of Terfenol-D is higher than 0.10, no coupling interaction for three-phase composites could be observed, but (dE/dn)33max of sandwiched composites still reached 20 mV/(cm.Oe). At high magnetic field intensity, the magnetoelectric effect voltage coefficient, (dE/dn)33, of sandwich composites is higher than that of three-phase composites; at low magnetic field intensity, (dE/dn)33 of sandwich composites is lower than that of three-phase composites. At their resonance frequency, the (dE/dn)33max of the sandwich composites and the three phase composites are 150 mV/(cm.Oe) and 42 mV/(cmoOe), respectively. This significant increase of (dE/ dn)33max at resonance frequency confirms the improvement of maximum magnetoelectric effect coefficient via sandwich-structured composites. 展开更多
关键词 MAGNETOELECTRIC PIEZOELECTRIC sandwiched composites
下载PDF
Mechanical characteristics of composite honeycomb sandwichstructures under oblique impact
9
作者 Yuechen Duan Zhen Cui +3 位作者 Xin Xie Ying Tie Ting Zou Tingting Wang 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2022年第5期359-370,共12页
Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique ... Carbon fiber reinforced polymer(CFRP)and CFRP-based composite honeycomb sandwich structures are particularly sensitive to impact.The mechanical characteristics of composite honeycomb sandwich structures under oblique impact are studied by numerical simulation and experiment.The oblique impact model is established,and the reliability of the model is verified by the oblique impact test.To further analyze the influence of structural parameters on energy absorption under oblique impact,the influence of impact angle,face sheet thickness and wall thickness of the honeycomb is numerically studied.The results show that the impact angle has an important effect on energy distribution.The structural parameters also have an effect on the peak contact force,contact time,and energy absorption,and the effect is different from normal impact due to the presence of frictional dissipation energy.Compared with normal impact,the debonding of oblique impact will be reduced,but the buckling range of the honeycomb core will be expanded. 展开更多
关键词 composite sandwich structures HONEYCOMB Oblique impact Mechanical characteristics Energy absorption
下载PDF
Mathematical modeling and simulation of the interface region of a tri-layer composite material,brass-steel-brass,produced by cold rolling
10
作者 H. Arabi S.H. Seyedein +1 位作者 A. Mehryab B. Tolaminejad 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2009年第2期189-196,共8页
The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to va... The object of this study was to find the optimum conditions for the production of a sandwich composite from the sheets of brass-steel-brass. The experimental data obtained during the production process were used to validate the simulation program, which was written to establish the relation between the interface morphology and the thickness reduction amount of the composite. For this purpose, two surfaces of a steel sheet were first prepared by scratching brushing before inserting it between two brass sheets with smooth surfaces. Three sheets were then subjected to a cold rolling process for producing a tri-layer composite with various thick- nesses. The sheet interface after rolling was studied by different techniques, and the bonding strength for each rolling condition was determined by peeling test. Moreover, a relation between interfacial bonding strength and thickness reduction was found. The simulation results were compared with the experimental data and the available theoretical models to modify the original simulation program with high application efficiency used for predicting the behavior of the interface under different pressures. 展开更多
关键词 sandwich composite cold rolling mathematical simulation metallic bonding INTERFACE
下载PDF
An advanced higher-order theory for laminated composite plates with general lamination angles
11
作者 Zhen Wu Hong Zhu Wan-Ji Chen 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第5期720-729,共10页
This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies ... This paper proposes a higher-order shear deformation theory to predict the bending response of the laminated composite and sandwich plates with general lamination configurations.The proposed theory a priori satisfies the continuity conditions of transverse shear stresses at interfaces.Moreover,the number of unknown variables is independent of the number of layers.The first derivatives of transverse displacements have been taken out from the inplane displacement fields,so that the C 0 shape functions are only required during its finite element implementation.Due to C 0 continuity requirements,the proposed model can be conveniently extended for implementation in commercial finite element codes.To verify the proposed theory,the fournode C 0 quadrilateral element is employed for the interpolation of all the displacement parameters defined at each nodal point on the composite plate.Numerical results show that following the proposed theory,simple C 0 finite elements could accurately predict the interlaminar stresses of laminated composite and sandwich plates directly from a constitutive equation,which has caused difficulty for the other global higher order theories. 展开更多
关键词 Laminated and sandwich composites Higherorder theory C 0 continuity requirement Transverse shear stress
下载PDF
Elastic-plastic deformation of sandwich rod on elastic basis
12
作者 谷宇 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第3期389-398,共10页
Sandwich composite material possesses advantages of both light weight and high strength. Although the mechanical behaviors of sandwich composite material with the influence of single external environment have been int... Sandwich composite material possesses advantages of both light weight and high strength. Although the mechanical behaviors of sandwich composite material with the influence of single external environment have been intensively studied, little work has been done in the study of mechanical property, in view of the nonlinear behavior of sandwich composites in the complicated external environments. In this paper, the problem about the bending of the three-layer elastic-plastic rod located on the elastic base, with a compressibly physical nonlinear core, has been studied. The mechanical response of the designed three-layer elements consisting of two bearing layers and a core has been examined. The complicated problem about curving of the three-layer rod located on the elastic base has been solved. The convergence of the proposed method of elastic solutions is examined to convince that the solution is acceptable. The calculated results indicate that the plasticity and physical nonlinearity of materials have a great influence on the deformation of the sandwich rod on the elastic basis. 展开更多
关键词 sandwich composite rod elastic base elastic-plastic deformation
下载PDF
Flexible,robust,sandwich structure polyimide composite film with alternative MXene and Ag NWs layers for electromagnetic interference shielding 被引量:2
13
作者 Yu Zhang Qiang Gao +7 位作者 Xianzhe Sheng Shuai Zhang Junjie Chen Yan Ma Jianbin Qin Yongsheng Zhao Xuetao Shi Guangcheng Zhang 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第28期194-203,共10页
The design and fabrication of electromagnetic interference shielding films with a novel structure to eliminate undesirable electromagnetic pollution is an important research direction.However,it is still a challenge t... The design and fabrication of electromagnetic interference shielding films with a novel structure to eliminate undesirable electromagnetic pollution is an important research direction.However,it is still a challenge to combine and organize nanofillers in different dimensions into the structured network in polymer-based electromagnetic interference(EMI)shielding composites.In this work,a sandwich struc-ture polyimide(PI)composite film with alternative 2D-MXene network and 1D-Silver nanowires(Ag NWs)network was prepared through the“electrospinning-immersion-hot pressing”method.With the increase of Ag NWs content,the EMI shielding effectiveness(SE)gradually increases while maintaining good flexibility and mechanical robustness.The EMI SE and the tensile strength of 150μm thick sand-wich composite film can reach up to 79.54 dB and 39.82 MPa,respectively.The prepared flexible and robust PI composite film with a sandwich structure has high EMI SE with less metal content,which can provide guidelines for the development of high-performance EMI polymeric films with potentials in wearable devices and equipment. 展开更多
关键词 Electromagnetic interference shielding sandwich structure composite film ELECTROSPINNING IMMERSION Hot pressing
原文传递
Band-gap Properties of Elastic Sandwich Metamaterial Plates with Composite Periodic Rod Core 被引量:3
14
作者 Linzhongyang E Ziye Chen +1 位作者 Fengming Liu Guangping Zou 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第1期51-62,共12页
A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral eleme... A novel elastic sandwich metamaterial plate with composite periodic rod core is designed,and the frequency band-gap characteristics are numerically and experimentally investigated.The finite element and spectral element hybrid method(FE-SEHM)is developed to obtain the dynamic stiffness matrix of the sandwich metamaterial plate.The frequency response curves of the plate structure under the harmonic excitation are calculated using the presented numerical method and validated by the vibration experiment.By comparing with the frequency response curves of sandwich metamaterial plate with pure elastic rod core,improved band-gap properties are achieved from the designed metamaterial plate with composite periodic rod core.The elastic metamaterial plate with composite periodic rod core can generate more band-gaps,so it can suppress the vibration and elastic wave propagation in the structure more effectively. 展开更多
关键词 sandwich metamaterial plate with composite periodic rod core Finite element method Spectral element method Vibration experiment Vibration band-gap
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部