The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness,...The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented potycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.展开更多
Although well known, Staphylococcus aureus is a bacterium that remains widely studied because of its high pathogenic potential and its ability to develop resistance to antibiotics routinely used in clinical practice. ...Although well known, Staphylococcus aureus is a bacterium that remains widely studied because of its high pathogenic potential and its ability to develop resistance to antibiotics routinely used in clinical practice. The present study investigated the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in hamburgers and sandwiches sold in supermarkets and fast food outlets in Salvador, BA, Brazil. Fifty samples of frozen raw hamburgers (25: beef and 25: chicken) and 50 samples of ready-to-eat sandwiches (25: beef and 25: chicken) were collected and investigated for the presence of MRSA. MRSA was present in 32% of the hamburgers and 8% of the sandwiches. The frequency of MRSA was higher in the samples containing chicken meat. However, the statistical analysis showed no association between MRSA presence and the type of meat investigated (P > 0.05). The high prevalence of MRSA in hamburgers and the presence of the microorganism in ready-to-eat sandwiches are worrying and indicate the need for better control during food preparation to prevent the spread of bacteria.展开更多
The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) e...The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) effect in the Co/Cu/Co sandwiches was investigated. It was found that the GMR showed an obvious anisotropy when the thickness of Si buffer layer was larger than or equal to 0.9 nm, and that the GMR was basically isotropic with an Si buffer layer thinner than 0.9 nm. The anisotropic behavior of GMR can be ascribed to the in-plane magnetic anisotropy in the sandwiches. Due to the interdiffusion at the Si buffer/Co interface, a Co2Si interface layer with a good (301) texture formed and induced the in-plane magnetic anisotropy in the sandwiches. The dependence of the crystalline texture of the sandwiches on the thickness of Si buffer layer was also studied.展开更多
In this paper, a method of local symmetry is applied to metallo-organic 5-membered and 6-membered ring poly-decker sandwiches (briefly called 5-membered sandwich Ⅰ and 6-membered sandwich Ⅱ), and the nature of their...In this paper, a method of local symmetry is applied to metallo-organic 5-membered and 6-membered ring poly-decker sandwiches (briefly called 5-membered sandwich Ⅰ and 6-membered sandwich Ⅱ), and the nature of their chemical bond is discussed by means of the HMO theory. The stable electronic configuration for these sandwiches is obtained. A working rule for the total number of valence electrons being 6(2n+l)+4t is proposed. It is reasonable to suggest some potential synthetic goals of poly-decker sandwiches. The discovery in 1951 of the transition metal π-complex, ferrocene, created a new research field of metalloorganic sandwiches. Since then, a lot of bis-decker sandwich-展开更多
As anyone who's paid a visit to veteran restaurant Goga on Yueyang Lu will tell you,proprietor Brad Turley is a man who knows good America-style food-Luckily these values seem to be in place at Market 101,his new ...As anyone who's paid a visit to veteran restaurant Goga on Yueyang Lu will tell you,proprietor Brad Turley is a man who knows good America-style food-Luckily these values seem to be in place at Market 101,his new San Franciscan delicatessen on Changle Lu.展开更多
The'KFC'(Korean Fried Chicken)Why we love it:All the ftm of KFC minus the food scandals,this sandwich takes ultra-crunchy secret recipe fried chicken,sesame vinaigrette,shredded cabbage and Sriracha-laced mayo...The'KFC'(Korean Fried Chicken)Why we love it:All the ftm of KFC minus the food scandals,this sandwich takes ultra-crunchy secret recipe fried chicken,sesame vinaigrette,shredded cabbage and Sriracha-laced mayonnaise,and puts it between a toasted sesame bun.What's not to love?展开更多
This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cy...This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.展开更多
Seabirds are valuable indicators of marine ecosystem processes and studying seabird diets can shed light on natural or human-induced variability in food-web composition.Specifically single-prey loading seabird species...Seabirds are valuable indicators of marine ecosystem processes and studying seabird diets can shed light on natural or human-induced variability in food-web composition.Specifically single-prey loading seabird species such as terns have the potential to act as visual sentinels of prey availability offshore.However,obtaining diet information from remote bird colonies is often challenging and time consuming.In this pilot study we present a novel approach to combine two established methods to study seabird foraging ecology,providing a powerful and cost-effective tool to study the distribution of prey items available to seabirds.We combined GPS tracking data of Sandwich Terns(Thalasseus sandvicensis)with prey-observations from a hide in 2012 and 2013,and from semicontinuously recorded camera footage in 2017.By doing so,we identified 115 approximate catch locations of prey(86 herring/sprat Clupeidae,29 sandeel Ammodytidae).Combining GPS-data and prey observations yielded detailed knowledge on the movements and chick diets of tracked birds as well as the spatial origin and lengths of captured prey items.Further catch distances of both Clupeidae and Ammodytidae resulted in deliveries of larger prey items and thus higher energy yield per trip,but also a higher energy expenditure per trip.We discuss the limitations and potential of our methodological approach to study foraging energetics during chick-provisioning of seabirds that carry prey items visible in their beaks.展开更多
In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to c...In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.展开更多
The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich struct...The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design.展开更多
In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitud...In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable.展开更多
Honeycomb sandwich structures are widely used in lightweight applications.Usually,these structures are subjected to extreme loading conditions,leading to potential failures due to delamination and debonding between th...Honeycomb sandwich structures are widely used in lightweight applications.Usually,these structures are subjected to extreme loading conditions,leading to potential failures due to delamination and debonding between the face sheet and the honeycomb core.Therefore,the present study is focused on the mechanical characterisation of honeycomb sandwich structures fabricated using advanced 3D printing technology.The continuous carbon fibres and ONYX-FR matrix materials have been used as raw materials for 3D printing of the specimens needed for various mechanical characterization testing;ONYX-FR is a commercial trade name for flame retardant short carbon fibre filled nylon filaments,used as a reinforcing material in Morkforged 3D printer.Edgewise and flatwise compression tests have been conducted for different configurations of honeycomb sandwich structures,fabricated by varying the face sheet thickness and core cell size,while keeping the core cell thickness and core height constant.Based on these tests,the proposed structure with face sheet thickness of 3.2 mm and a core cell size of 12.7 mm exhibited the highest energy absorption and prevented delamination and debonding failures.Therefore,3D printing technology can also be considered as an alternative method for sandwich structure fabrication.However,detailed parametric studies still need to be conducted to meet various other structural integrity criteria related to the lightweight applications.展开更多
文摘The magnetic and structural properties in Co/Cu/Co sandwiches with Ni and Cr buffer layers were investigated. It was found that the coercivity in Ni layer buffered samples decreases with increasing Ni layer thickness, while that in Cr layer buffered ones increases with increasing Cr layer thickness, leading to a large difference in field sensitivity of their giant magnetoresistance (GMR) properties. X-ray diffraction and high resolution transmission electron microscope images exhibited that there is a strong fcc (111) texture in the samples with Ni buffer layer. But there are only randomly oriented potycrystalline grains in Cr buffered sandwiches. According to atomic force microscope topography, the surface roughness of Cr buffered sandwiches is smaller than that of Ni buffered ones. It is demonstrated that buffer layer influences both magnetic and structural properties in Co/Cu/Co sandwiches as well as their GMR characteristics.
文摘Although well known, Staphylococcus aureus is a bacterium that remains widely studied because of its high pathogenic potential and its ability to develop resistance to antibiotics routinely used in clinical practice. The present study investigated the occurrence of methicillin-resistant Staphylococcus aureus (MRSA) in hamburgers and sandwiches sold in supermarkets and fast food outlets in Salvador, BA, Brazil. Fifty samples of frozen raw hamburgers (25: beef and 25: chicken) and 50 samples of ready-to-eat sandwiches (25: beef and 25: chicken) were collected and investigated for the presence of MRSA. MRSA was present in 32% of the hamburgers and 8% of the sandwiches. The frequency of MRSA was higher in the samples containing chicken meat. However, the statistical analysis showed no association between MRSA presence and the type of meat investigated (P > 0.05). The high prevalence of MRSA in hamburgers and the presence of the microorganism in ready-to-eat sandwiches are worrying and indicate the need for better control during food preparation to prevent the spread of bacteria.
文摘The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) effect in the Co/Cu/Co sandwiches was investigated. It was found that the GMR showed an obvious anisotropy when the thickness of Si buffer layer was larger than or equal to 0.9 nm, and that the GMR was basically isotropic with an Si buffer layer thinner than 0.9 nm. The anisotropic behavior of GMR can be ascribed to the in-plane magnetic anisotropy in the sandwiches. Due to the interdiffusion at the Si buffer/Co interface, a Co2Si interface layer with a good (301) texture formed and induced the in-plane magnetic anisotropy in the sandwiches. The dependence of the crystalline texture of the sandwiches on the thickness of Si buffer layer was also studied.
文摘In this paper, a method of local symmetry is applied to metallo-organic 5-membered and 6-membered ring poly-decker sandwiches (briefly called 5-membered sandwich Ⅰ and 6-membered sandwich Ⅱ), and the nature of their chemical bond is discussed by means of the HMO theory. The stable electronic configuration for these sandwiches is obtained. A working rule for the total number of valence electrons being 6(2n+l)+4t is proposed. It is reasonable to suggest some potential synthetic goals of poly-decker sandwiches. The discovery in 1951 of the transition metal π-complex, ferrocene, created a new research field of metalloorganic sandwiches. Since then, a lot of bis-decker sandwich-
文摘As anyone who's paid a visit to veteran restaurant Goga on Yueyang Lu will tell you,proprietor Brad Turley is a man who knows good America-style food-Luckily these values seem to be in place at Market 101,his new San Franciscan delicatessen on Changle Lu.
文摘The'KFC'(Korean Fried Chicken)Why we love it:All the ftm of KFC minus the food scandals,this sandwich takes ultra-crunchy secret recipe fried chicken,sesame vinaigrette,shredded cabbage and Sriracha-laced mayonnaise,and puts it between a toasted sesame bun.What's not to love?
基金financially supported by the National Key Research and Development Program of China(Grant No.2022YFB2602800)the National Natural Science Foundation of China(Grant Nos.51879231,51679214)。
文摘This paper aims to enhance the compression capacity of underwater cylindrical shells by adopting the corrugated sandwich structure of cuttlebone.The cuttlebone suffers uniaxial external compression,while underwater cylindrical shells are in a biaxial compressive stress state.To suit the biaxial compressive stress state,a novel bidirectional corrugated sandwich structure is proposed to improve the bearing capacity of cylindrical shells.The static and buckling analysis for the sandwich shell and the unstiffened cylindrical shell with the same volume-weight ratio are studied by numerical simulation.It is indicated that the proposed sandwich shell can effectively reduce the ratio between circumferential and axial stress from 2 to 1.25 and improve the critical buckling load by about 1.63 times.Numerical simulation shows that optimizing and adjusting the structural parameters could significantly improve the advantage of the sandwich shell.Then,the hydrostatic pressure tests for shell models fabricated by 3D printing are carried out.According to the experimental results,the overall failure position of the sandwich shell is at the center part of the sandwich shell.It has been found the average critical load of the proposed sandwich shell models exceeds two times that of the unstiffened shell models.Hence,the proposed bio-inspired bidirectional corrugated sandwich structure can significantly enhance the pressure resistance capability of cylindrical shells.
文摘Seabirds are valuable indicators of marine ecosystem processes and studying seabird diets can shed light on natural or human-induced variability in food-web composition.Specifically single-prey loading seabird species such as terns have the potential to act as visual sentinels of prey availability offshore.However,obtaining diet information from remote bird colonies is often challenging and time consuming.In this pilot study we present a novel approach to combine two established methods to study seabird foraging ecology,providing a powerful and cost-effective tool to study the distribution of prey items available to seabirds.We combined GPS tracking data of Sandwich Terns(Thalasseus sandvicensis)with prey-observations from a hide in 2012 and 2013,and from semicontinuously recorded camera footage in 2017.By doing so,we identified 115 approximate catch locations of prey(86 herring/sprat Clupeidae,29 sandeel Ammodytidae).Combining GPS-data and prey observations yielded detailed knowledge on the movements and chick diets of tracked birds as well as the spatial origin and lengths of captured prey items.Further catch distances of both Clupeidae and Ammodytidae resulted in deliveries of larger prey items and thus higher energy yield per trip,but also a higher energy expenditure per trip.We discuss the limitations and potential of our methodological approach to study foraging energetics during chick-provisioning of seabirds that carry prey items visible in their beaks.
基金the grants from the National Natural Science Foundation of China(Nos.52078152 and 12002095)Guangzhou Government-University Union Fund(No.202201020532)。
文摘In this article,the experimental and finite element analysis is utilized to investigate the quasi-static compression features of sandwich constructions built with tapered tubes.3D printing technology was utilized to create the hollow centers of the tapering tubes,with and without corrugations.The results demonstrate that the energy absorption(EA)and specific energy absorption(SEA)of the single corrugated tapered tube sandwich are 51.6% and 19.8% higher,respectively,than those of the conical tube sandwich.Furthermore,the results demonstrate that energy absorbers can benefit from corrugation in order to increase their efficiency.Additionally,the tapered corrugated tubes'resistance to oblique impacts was studied.Compared to a straight tube,the tapered tube is more resistant to oblique loads and has a lower initial peak crushing force(PCF),according to numerical simulations.After conducting a parametric study,it was discovered that the energy absorption performance of the sandwich construction is significantly affected by the amplitude,number of corrugations,and wall thickness.EA and SEA of DTS with corrugation number of 8 increased by 17.4%and 29.6%,respectively,while PCF decreased by 9.2% compared to DTS with corrugation number of 10.
基金Supported by National Natural Science Foundation of China (Grant Nos.12072219,12202303,12272254)Shanxi Provincial Excellent Talents Science and Technology Innovation Project of China (Grant No.201805D211033)。
文摘The current research of sandwich structures under dynamic loading mainly focus on the response characteristic of structure.The micro-topology of core layers would sufficiently influence the property of sandwich structure.However,the micro deformation and topology mechanism of structural deformation and energy absorption are unclear.In this paper,based on the bi-directional evolutionary structural optimization method and periodic base cell(PBC)technology,a topology optimization frame work is proposed to optimize the core layer of sandwich beams.The objective of the present optimization problem is to maximize shear stiffness of PBC with a volume constraint.The effects of the volume fraction,filter radius,and initial PBC aspect ratio on the micro-topology of the core were discussed.The dynamic response process,core compression,and energy absorption capacity of the sandwich beams under blast impact loading were analyzed by the finite element method.The results demonstrated that the overpressure action stage was coupled with the core compression stage.Under the same loading and mass per unit area,the sandwich beam with a 20%volume fraction core layer had the best blast resistance.The filter radius has a slight effect on the shear stiffness and blast resistances of the sandwich beams.But increasing the filter radius could slightly improve the bending stiffness.Upon changing the initial PBC aspect ratio,there are three ways for PBC evolution:The first is to change the angle between the adjacent bars,the second is to further form holes in the bars,and the third is to combine the first two ways.However,not all three ways can improve the energy absorption capacity of the structure.Changing the aspect ratio of the PBC arbitrarily may lead to worse results.More studies are necessary for further detailed optimization.This research proposes a new topology sandwich beam structure by micro-topology optimization,which has sufficient shear stiffness.The micro mechanism of structural energy absorption is clarified,it is significant for structural energy absorption design.
文摘In this study,the instability and bifurcation diagrams of a functionally graded(FG)porous sandwich beam on an elastic,viscous foundation which is influenced by an axial load,are investigated with an analytical attitude.To do so,the Timoshenko beam theory is utilized to take the shear deformations into account,and the nonlinear Von-Karman approach is adopted to acquire the equations of motion.Then,to turn the partial differential equations(PDEs)into ordinary differential equations(ODEs)in the case of equations of motion,the method of Galerkin is employed,followed by the multiple time scale method to solve the resulting equations.The impact of parameters affecting the response of the beam,including the porosity distribution,porosity coefficient,temperature increments,slenderness,thickness,and damping ratios,are explicitly discussed.It is found that the parameters mentioned above affect the bifurcation points and instability of the sandwich porous beams,some of which,including the effect of temperature and porosity distribution,are less noticeable.
文摘Honeycomb sandwich structures are widely used in lightweight applications.Usually,these structures are subjected to extreme loading conditions,leading to potential failures due to delamination and debonding between the face sheet and the honeycomb core.Therefore,the present study is focused on the mechanical characterisation of honeycomb sandwich structures fabricated using advanced 3D printing technology.The continuous carbon fibres and ONYX-FR matrix materials have been used as raw materials for 3D printing of the specimens needed for various mechanical characterization testing;ONYX-FR is a commercial trade name for flame retardant short carbon fibre filled nylon filaments,used as a reinforcing material in Morkforged 3D printer.Edgewise and flatwise compression tests have been conducted for different configurations of honeycomb sandwich structures,fabricated by varying the face sheet thickness and core cell size,while keeping the core cell thickness and core height constant.Based on these tests,the proposed structure with face sheet thickness of 3.2 mm and a core cell size of 12.7 mm exhibited the highest energy absorption and prevented delamination and debonding failures.Therefore,3D printing technology can also be considered as an alternative method for sandwich structure fabrication.However,detailed parametric studies still need to be conducted to meet various other structural integrity criteria related to the lightweight applications.