BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells ...BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells (NSCs) proliferation and differentiation into dopaminergic neurons using in vitro studies, and to observe NSC differentiation in a mouse model of Parkinson's disease, as well as behavioral changes before and after transplantation. DESIGN, TIME AND SETTING: In vitro neural cell biology trial and in vivo randomized, controlled animal trial were performed at the Institute of Basic Medical Sciences, Chongqing Medical University between September 2004 and December 2007. MATERIALS: TSPG (purity 〉 95%) was isolated, extracted, and identified by Chongqing Academy of Chinese Materia Medica. Recombinant human basic fibroblast growth factor (bFGF) and recombinant human epidermal growth factor (EGF) were purchased from PeproTech, USA. A total of 25 C57/BL6J mice, aged 18-20 weeks were included. Twenty were used to establish a Parkinson's disease model with i.p. injection of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) and TSPG alone or combined with interleukin-1 (IL-1)-treated NSCs prior to transplantation into the corpus striatum. The remaining five mice were pretreated for 3 days with TSPG prior to MPTP injection, serving as the TSPG prevention group. METHODS: Primary NSCs were isolated, cultured and purified from embryonic cerebral cortex. Immunocytochemistry was employed to detect specific antigen expression in the NSCs. In vitro experiment: (1) to induce proliferation, NSCs were treated with TSPG, EGF+bFGF, or TSPG+EGF+bFGF, respectively; (2) to induce dopaminergic neuronal differentiation, NSCs were treated with TSPG, IL-1, or TSPG+IL-1, respectively. MAIN OUTCOME MEASURES: In vitro experiment: the effects of TSPG on NSCs proliferation were evaluated with flow cytometry and MTT assay. Tyrosine hydroxylase expression was determined by immunocytochemistry assay to observe effects of TSPG on dopaminergic neuronal differentiation. In vivo experiment: differentiation of grafted NSCs in the mouse brain was determined by immunohistochemical staining. Behavioral changes were evaluated by spontaneous activity frequency, memory function, and score of paralysis agitans. RESULTS: (1) NSCs were cultured and passaged for more than three passages. Immunocytochemistry revealed positive nestin staining, as well as neurofilament protein and glial fibrillary acidic protein. (2) TSPG significantly increased NSC proliferation, in particular when combined with EGF and bFGF, which was twice as effective as FGF or bFGF alone. TSPG also induced dopaminergic differentiation in NSCs, in particular when TSPG was added together with IL-1, resulting in an effect five times greater than that of IL-1 alone. (3) At day 30 following transplantation, most NSCs in the TSPG prevention group differentiated into dopaminergic neurons, and the scores of paralysis agitans, spontaneous activity, and memory function were significantly increased compared with TSPG alone or TSPG+IL-1 groups (P 〈 0.05). CONCLUSION: TSPG stimulated NSC proliferation, in particular when combined with FGF and bFGF. TSPG significantly induced dopaminergic neuronal differentiation of NSCs, and the effect was greater when combined with IL-1. In addition, TSPG greatly improved behavior in the Parkinson's disease mouse model following NSC transplantation. Following NSC transplantation, TSPG pretreatment exhibited superior efficacy over either TSPG alone or TSPG in combination with IL-1, in terms of behavioral improvements in the Parkinson's disease mouse model.展开更多
It is well accepted in China that elder ginsengs have more bioactivity and value than younger ones. However, there is little research about the comparison of beneficial effects of ginsengs with different ages. In this...It is well accepted in China that elder ginsengs have more bioactivity and value than younger ones. However, there is little research about the comparison of beneficial effects of ginsengs with different ages. In this study, ginseng root extracts (GRE) were extracted from ginsengs of 5, 8, 12, 14, and 16 years old, respectively, using 55% ethanol and their effects on human leukemic K562 cells within 48 hours were tested by using Cell Counting Kit-8. The results show that there are significant increases in the cell viability of all the GRE groups compared with Control group within 32 hours. Furthermore, the growth curves of GRE groups were obviously distinct from each other. The cell viability of 5-year-old and 8-year-old GRE groups kept a rapid increase while that of 16-year-old GRE group showed a strong fluctuation within 28 hours. Our results demonstrate that root extracts from ginsengs of different ages contain different bioactivity constituents and have different effects on cell.展开更多
Ginseng is said to have beneficial effects on anemia. The proliferation effects of totalsaponins of Panax ginseng (TSPG) on hematopoietic progenitor cell in healthy individuals and 29 patientswith aplastic anemia (AA)...Ginseng is said to have beneficial effects on anemia. The proliferation effects of totalsaponins of Panax ginseng (TSPG) on hematopoietic progenitor cell in healthy individuals and 29 patientswith aplastic anemia (AA) were observed through bone marrow cultures of burst forming unit-erythroid(BFU-E) , colony forming unit-erythroid (CFU-E) and colony forming unit-granulocyte/macrophage (CFU-GM) in vitrcacompared with methyltestosterone (MT). The results suggest TSPG might prompt the prolif-eration of normal progenitor cellS at a concentration of 20 g/ml. The numbers of BFU-E ,CFU-E and CFU-GM increased by 37. 8±2.9 % , 31. 4±2. 9 % and 33. 3± 4. 0 % respectively over the controls ; further-more TSPG was still useful to BFU-E,CFU-E growth without Epo in vitro, although the colony nurnberswere much lower. Otherwise MT was useless to CFUGM. Of the 29 patients with AA, 14 who respondedto MT showed sensitivity to TSPG in marrow culture (the rising rate of colony formation exceeded 30 % ) ,but immune-mediated AA (patient's peripheral blood mononucleated cell suppressed normalhematopoiesis) and stem cell decreased AA (few of colonies were formed) showed almost no expressionfor TSPG activity because of the immunological suppression system and the absence of progenitors.展开更多
Objective:To determine the antiproliferative activity of Rubus parvifolius L.(RP)extract,its medicinal serum and RP total saponins(RPTS)against K562 cells in vitro and in vivo.Methods:Nude mice models bearing le...Objective:To determine the antiproliferative activity of Rubus parvifolius L.(RP)extract,its medicinal serum and RP total saponins(RPTS)against K562 cells in vitro and in vivo.Methods:Nude mice models bearing leukemia tumors were treated with different concentrations of RP extract.The size,weight and histopathological change of leukemic tumors were determined.Semi-solid agar culture and methylthiazolyl tetrazolium(MTT)assay were used to determine in vitro the inhibition of colony formation and proliferation of K562 cells respectively by different concentrations of RP medicinal serum and RPTS.Results:RP extract had a tumor inhibition rate of 84.8%when administered to mice at a dose of 1.0 g/day of crude RP root equivalent.Semi-solid agar culture of K562cells in the presence of 20%(v/v)of RP medicinal serum and 150 mg/L RPTS demonstrated a 50.8%and 100%inhibition of the colony forming unit(CFU)-K562,respectively.The same doses of RP medicinal serum and RPTS showed a proliferation inhibition of 31.4%and 86.3%,respectively against K562 cells in MTT assay.Conclusion:RP extract and RPTS show effective antiproliferative activity against myeloid leukemia cells in vitro and in vivo.展开更多
目的运用基因芯片技术研究人参总皂甙(TSPG)作用后K562细胞基因表达谱的变化。方法200 μg/mlTSPG作用于K562细胞3d后,提取总RNA,合成cRNA并分别用cy3和cy5标记,与Agilent Human 1B寡核苷酸基因芯片杂交,研究基因表达谱的变化。结果TSP...目的运用基因芯片技术研究人参总皂甙(TSPG)作用后K562细胞基因表达谱的变化。方法200 μg/mlTSPG作用于K562细胞3d后,提取总RNA,合成cRNA并分别用cy3和cy5标记,与Agilent Human 1B寡核苷酸基因芯片杂交,研究基因表达谱的变化。结果TSPG刺激K562细胞后共有362个基因表达发生变化,与对照组K562细胞比较,表达上调的基因有20个,主要有代谢相关基因,信号转导相关基因,细胞受体相关基因等;表达下调的有342个,包括免疫防御相关基因,DNA结合与转录因子,代谢相关基因,细胞周期相关基因等。RT-PCR技术验证了FOSL1、E2F2、CCNE2和ODZ1四个基因表达的变化。结论TSPG刺激K562细胞后,影响了细胞内一系列基因的表达。这些基因可能与TSPG的抗肿瘤机制有关。展开更多
为探讨人参总皂甙(totalsaponins of panaxginseng,TSPG)协同造血生长因子体外诱导CD34+造血干/祖细胞(HSC/HPC)扩增与分化的作用,收集人脐血、骨髓细胞并采用StemsepTM干细胞分选系统分离纯化CD34+HSC/HPC,用不同剂量TSPG加入不同组合...为探讨人参总皂甙(totalsaponins of panaxginseng,TSPG)协同造血生长因子体外诱导CD34+造血干/祖细胞(HSC/HPC)扩增与分化的作用,收集人脐血、骨髓细胞并采用StemsepTM干细胞分选系统分离纯化CD34+HSC/HPC,用不同剂量TSPG加入不同组合的造血生长因子进行培养,检测细胞总数、CD34+细胞和CD33+细胞比例及集落形成细胞总数(CFC)、粒系祖细胞(CFU-GM)数量变化。结果显示:10-70μg/mlTSPG均可不同程度地提高脐血细胞总数、CFC数和CD34+细胞数,50μg/ml是最佳刺激浓度,可使细胞总数、CFC数和CD34+细胞数分别增至(2470.5±79.96)×103、(53.96±4.29)×100%和(21.86±3.09)×100%;20μg/ml是液体培养诱导骨髓CD34+细胞向粒系分化的最佳浓度,可使细胞总数、CFU-GM和CD33+细胞分别增至(133.2±9.03)×103、(26.78±1.91)×100%和(16.98±1.73)×100%;甲基纤维素半固体培养检测显示,TSPG(10-50μg/ml)均能提高CD34+细胞形成CFU-GM的集落产率,以TSPG20μg/ml效果最为明显。结论:合适剂量的TSPG能够促进CD34+造血干/祖细胞体外扩增与定向诱导分化。展开更多
文摘BACKGROUND: Total saponins of Panax ginseng (TSPG) exhibits neuroprotection against Parkinson's disease in the substantia nigra. OBJECTIVE: To investigate the effects of TSPG on human embryonic neural stem cells (NSCs) proliferation and differentiation into dopaminergic neurons using in vitro studies, and to observe NSC differentiation in a mouse model of Parkinson's disease, as well as behavioral changes before and after transplantation. DESIGN, TIME AND SETTING: In vitro neural cell biology trial and in vivo randomized, controlled animal trial were performed at the Institute of Basic Medical Sciences, Chongqing Medical University between September 2004 and December 2007. MATERIALS: TSPG (purity 〉 95%) was isolated, extracted, and identified by Chongqing Academy of Chinese Materia Medica. Recombinant human basic fibroblast growth factor (bFGF) and recombinant human epidermal growth factor (EGF) were purchased from PeproTech, USA. A total of 25 C57/BL6J mice, aged 18-20 weeks were included. Twenty were used to establish a Parkinson's disease model with i.p. injection of MPTP (1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine) and TSPG alone or combined with interleukin-1 (IL-1)-treated NSCs prior to transplantation into the corpus striatum. The remaining five mice were pretreated for 3 days with TSPG prior to MPTP injection, serving as the TSPG prevention group. METHODS: Primary NSCs were isolated, cultured and purified from embryonic cerebral cortex. Immunocytochemistry was employed to detect specific antigen expression in the NSCs. In vitro experiment: (1) to induce proliferation, NSCs were treated with TSPG, EGF+bFGF, or TSPG+EGF+bFGF, respectively; (2) to induce dopaminergic neuronal differentiation, NSCs were treated with TSPG, IL-1, or TSPG+IL-1, respectively. MAIN OUTCOME MEASURES: In vitro experiment: the effects of TSPG on NSCs proliferation were evaluated with flow cytometry and MTT assay. Tyrosine hydroxylase expression was determined by immunocytochemistry assay to observe effects of TSPG on dopaminergic neuronal differentiation. In vivo experiment: differentiation of grafted NSCs in the mouse brain was determined by immunohistochemical staining. Behavioral changes were evaluated by spontaneous activity frequency, memory function, and score of paralysis agitans. RESULTS: (1) NSCs were cultured and passaged for more than three passages. Immunocytochemistry revealed positive nestin staining, as well as neurofilament protein and glial fibrillary acidic protein. (2) TSPG significantly increased NSC proliferation, in particular when combined with EGF and bFGF, which was twice as effective as FGF or bFGF alone. TSPG also induced dopaminergic differentiation in NSCs, in particular when TSPG was added together with IL-1, resulting in an effect five times greater than that of IL-1 alone. (3) At day 30 following transplantation, most NSCs in the TSPG prevention group differentiated into dopaminergic neurons, and the scores of paralysis agitans, spontaneous activity, and memory function were significantly increased compared with TSPG alone or TSPG+IL-1 groups (P 〈 0.05). CONCLUSION: TSPG stimulated NSC proliferation, in particular when combined with FGF and bFGF. TSPG significantly induced dopaminergic neuronal differentiation of NSCs, and the effect was greater when combined with IL-1. In addition, TSPG greatly improved behavior in the Parkinson's disease mouse model following NSC transplantation. Following NSC transplantation, TSPG pretreatment exhibited superior efficacy over either TSPG alone or TSPG in combination with IL-1, in terms of behavioral improvements in the Parkinson's disease mouse model.
文摘It is well accepted in China that elder ginsengs have more bioactivity and value than younger ones. However, there is little research about the comparison of beneficial effects of ginsengs with different ages. In this study, ginseng root extracts (GRE) were extracted from ginsengs of 5, 8, 12, 14, and 16 years old, respectively, using 55% ethanol and their effects on human leukemic K562 cells within 48 hours were tested by using Cell Counting Kit-8. The results show that there are significant increases in the cell viability of all the GRE groups compared with Control group within 32 hours. Furthermore, the growth curves of GRE groups were obviously distinct from each other. The cell viability of 5-year-old and 8-year-old GRE groups kept a rapid increase while that of 16-year-old GRE group showed a strong fluctuation within 28 hours. Our results demonstrate that root extracts from ginsengs of different ages contain different bioactivity constituents and have different effects on cell.
文摘Ginseng is said to have beneficial effects on anemia. The proliferation effects of totalsaponins of Panax ginseng (TSPG) on hematopoietic progenitor cell in healthy individuals and 29 patientswith aplastic anemia (AA) were observed through bone marrow cultures of burst forming unit-erythroid(BFU-E) , colony forming unit-erythroid (CFU-E) and colony forming unit-granulocyte/macrophage (CFU-GM) in vitrcacompared with methyltestosterone (MT). The results suggest TSPG might prompt the prolif-eration of normal progenitor cellS at a concentration of 20 g/ml. The numbers of BFU-E ,CFU-E and CFU-GM increased by 37. 8±2.9 % , 31. 4±2. 9 % and 33. 3± 4. 0 % respectively over the controls ; further-more TSPG was still useful to BFU-E,CFU-E growth without Epo in vitro, although the colony nurnberswere much lower. Otherwise MT was useless to CFUGM. Of the 29 patients with AA, 14 who respondedto MT showed sensitivity to TSPG in marrow culture (the rising rate of colony formation exceeded 30 % ) ,but immune-mediated AA (patient's peripheral blood mononucleated cell suppressed normalhematopoiesis) and stem cell decreased AA (few of colonies were formed) showed almost no expressionfor TSPG activity because of the immunological suppression system and the absence of progenitors.
基金Supported by Provincial Administration of Traditional Chinese Medicine of Zhejiang Province,China(No.2008CB063)
文摘Objective:To determine the antiproliferative activity of Rubus parvifolius L.(RP)extract,its medicinal serum and RP total saponins(RPTS)against K562 cells in vitro and in vivo.Methods:Nude mice models bearing leukemia tumors were treated with different concentrations of RP extract.The size,weight and histopathological change of leukemic tumors were determined.Semi-solid agar culture and methylthiazolyl tetrazolium(MTT)assay were used to determine in vitro the inhibition of colony formation and proliferation of K562 cells respectively by different concentrations of RP medicinal serum and RPTS.Results:RP extract had a tumor inhibition rate of 84.8%when administered to mice at a dose of 1.0 g/day of crude RP root equivalent.Semi-solid agar culture of K562cells in the presence of 20%(v/v)of RP medicinal serum and 150 mg/L RPTS demonstrated a 50.8%and 100%inhibition of the colony forming unit(CFU)-K562,respectively.The same doses of RP medicinal serum and RPTS showed a proliferation inhibition of 31.4%and 86.3%,respectively against K562 cells in MTT assay.Conclusion:RP extract and RPTS show effective antiproliferative activity against myeloid leukemia cells in vitro and in vivo.
文摘目的运用基因芯片技术研究人参总皂甙(TSPG)作用后K562细胞基因表达谱的变化。方法200 μg/mlTSPG作用于K562细胞3d后,提取总RNA,合成cRNA并分别用cy3和cy5标记,与Agilent Human 1B寡核苷酸基因芯片杂交,研究基因表达谱的变化。结果TSPG刺激K562细胞后共有362个基因表达发生变化,与对照组K562细胞比较,表达上调的基因有20个,主要有代谢相关基因,信号转导相关基因,细胞受体相关基因等;表达下调的有342个,包括免疫防御相关基因,DNA结合与转录因子,代谢相关基因,细胞周期相关基因等。RT-PCR技术验证了FOSL1、E2F2、CCNE2和ODZ1四个基因表达的变化。结论TSPG刺激K562细胞后,影响了细胞内一系列基因的表达。这些基因可能与TSPG的抗肿瘤机制有关。
文摘为探讨人参总皂甙(totalsaponins of panaxginseng,TSPG)协同造血生长因子体外诱导CD34+造血干/祖细胞(HSC/HPC)扩增与分化的作用,收集人脐血、骨髓细胞并采用StemsepTM干细胞分选系统分离纯化CD34+HSC/HPC,用不同剂量TSPG加入不同组合的造血生长因子进行培养,检测细胞总数、CD34+细胞和CD33+细胞比例及集落形成细胞总数(CFC)、粒系祖细胞(CFU-GM)数量变化。结果显示:10-70μg/mlTSPG均可不同程度地提高脐血细胞总数、CFC数和CD34+细胞数,50μg/ml是最佳刺激浓度,可使细胞总数、CFC数和CD34+细胞数分别增至(2470.5±79.96)×103、(53.96±4.29)×100%和(21.86±3.09)×100%;20μg/ml是液体培养诱导骨髓CD34+细胞向粒系分化的最佳浓度,可使细胞总数、CFU-GM和CD33+细胞分别增至(133.2±9.03)×103、(26.78±1.91)×100%和(16.98±1.73)×100%;甲基纤维素半固体培养检测显示,TSPG(10-50μg/ml)均能提高CD34+细胞形成CFU-GM的集落产率,以TSPG20μg/ml效果最为明显。结论:合适剂量的TSPG能够促进CD34+造血干/祖细胞体外扩增与定向诱导分化。