The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, ...The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, cotyledonary node and axillary bud of Saposhnikovia divaricata (Turcz.) Schischk as explants, a lot of plantleles were obtained and the corresponding plant regeneration-system was established. The results showed that when use MS+1.0 mg·L^-1 6-BA+0.2 mg·L^-1 NAA as callus induction medium, the cotyledonary node had the highest bourgeon rate, and its callus was better than any others; MS+2 mg·L^-1 6-BA+0.4 mg·L^-1 NAA was the best adventitious buds induction medium, and the best adventitious buds induced condition was 3% sucrose as carbon source, illumination for 12-14 h·d^-1 and pH 5.8, The best rootage medium was 1/2 MS+0.5 mg·L^-1 NAA.展开更多
Saposhnikovia divaricata(SD)has high medicinal and edible value,but relatively little research has been done on its qual-ity markers(Q-markers).To further clarify the Q-markers of SD with their corresponding pharmacod...Saposhnikovia divaricata(SD)has high medicinal and edible value,but relatively little research has been done on its qual-ity markers(Q-markers).To further clarify the Q-markers of SD with their corresponding pharmacodynamic targets.In this experiment,14 batches of SD were identified and screened for Q-marker candidate components using a combination of HPLC fingerprint with similarity analysis,principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis.Then,network pharmacology was used to predict Q-markers and core targets.The results showed that 5-O-methylvisammioside,cimifugin,and prim-O-glucosylcimifugin could be used as Q-markers of SD;while,MAPK1,MAPK3,PIK3CA,JUN,and MAPK8 were the core targets of SD for drug efficacy.To further evaluate the bind-ing efficiency of Q-markers,molecular docking of the main active ingredients of SD to the core targets was performed.The results showed that the compounds bind well to their targets,and binding energies were all less than-5 kcal/mol.The Q-markers obtained from the screening were closely related to the core target genes,which could achieve therapeutic effects by modulating the relevant signaling pathways.This study offers a reference for the establishment of a set of quality control evaluation system for SD potential Q-markers prediction analysis,and lays the foundation for elucidating the mechanism of actionunderlying itspharmacodynamic substance.展开更多
基金Supported by Natural Science Foundation of Heilongjiang Province (C2005-31)
文摘The study aimed to optimize the induction and differentiation medium by exploreing different tissue culture of Saposhnikovia divaricata (Turcz.) Schischk. In tissue culture with the root, stem segments, young leaf, cotyledonary node and axillary bud of Saposhnikovia divaricata (Turcz.) Schischk as explants, a lot of plantleles were obtained and the corresponding plant regeneration-system was established. The results showed that when use MS+1.0 mg·L^-1 6-BA+0.2 mg·L^-1 NAA as callus induction medium, the cotyledonary node had the highest bourgeon rate, and its callus was better than any others; MS+2 mg·L^-1 6-BA+0.4 mg·L^-1 NAA was the best adventitious buds induction medium, and the best adventitious buds induced condition was 3% sucrose as carbon source, illumination for 12-14 h·d^-1 and pH 5.8, The best rootage medium was 1/2 MS+0.5 mg·L^-1 NAA.
基金funded by Fundamental Research Funds for the Central Universities(2572022DJ01)Natural Science Foundation of Heilongjiang Province(LH2022B004)+1 种基金111 Project(B20088)Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team).
文摘Saposhnikovia divaricata(SD)has high medicinal and edible value,but relatively little research has been done on its qual-ity markers(Q-markers).To further clarify the Q-markers of SD with their corresponding pharmacodynamic targets.In this experiment,14 batches of SD were identified and screened for Q-marker candidate components using a combination of HPLC fingerprint with similarity analysis,principal component analysis,hierarchical cluster analysis,and partial least squares discriminant analysis.Then,network pharmacology was used to predict Q-markers and core targets.The results showed that 5-O-methylvisammioside,cimifugin,and prim-O-glucosylcimifugin could be used as Q-markers of SD;while,MAPK1,MAPK3,PIK3CA,JUN,and MAPK8 were the core targets of SD for drug efficacy.To further evaluate the bind-ing efficiency of Q-markers,molecular docking of the main active ingredients of SD to the core targets was performed.The results showed that the compounds bind well to their targets,and binding energies were all less than-5 kcal/mol.The Q-markers obtained from the screening were closely related to the core target genes,which could achieve therapeutic effects by modulating the relevant signaling pathways.This study offers a reference for the establishment of a set of quality control evaluation system for SD potential Q-markers prediction analysis,and lays the foundation for elucidating the mechanism of actionunderlying itspharmacodynamic substance.