期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Pilot scale test of producing nickel concentrate from low-grade saprolitic laterite by direct reduction-magnetic separation 被引量:3
1
作者 郑国林 朱德庆 +4 位作者 潘建 李启厚 安月明 朱景和 刘志宏 《Journal of Central South University》 SCIE EI CAS 2014年第5期1771-1777,共7页
The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,w... The enrichment of Ni from a low-grade saprolitic laterite ore,which has been pre-treated by high pressure grinding roller(HPGR) to be 74% passing 0.074 mm and contains 0.92% Ni,18.47% Fe,10.61% MgO and 42.27% SiO2,was conducted by using pelletizing,rotary kiln reduction and magnetic separation process on a semi industrial scale,and the effects of reduction duration,mass ratio of coal to pellets(C/P),the types of magnetic separator,the sections of grinding-separation and the grinding fineness on the recovery of Ni and Fe were examined.It is shown that nickel concentrate containing 3.13 % Ni and 59.20 % Fe was achieved at recoveries of 84.36 % and 71.51% for Ni and Fe,respectively under the following conditions:reducing at (1120±40) ℃ for 120 min,C/P being 1.0,wet grinding of reduced pellets up to 70%-87% passing 0.074 mm and a magnetic field intensity of 238.8 kA/m during the first section of grinding-magnetic separation,and a grinding fineness of 84%-91% passing 0.045 mm and a magnetic intensity of 39.8 kA/m during the second section of grinding-magnetic separation.The enriched Ni containing concentrate has a low content of S and P,and can be used for further processing to produce high-grade ferronickel alloy. 展开更多
关键词 low-grade saprolitic laterite direct reduction magnetic separation PELLETIZATION segmented grinding nickel concentrate
下载PDF
Evolution of ferronickel particles during the reduction of low-grade saprolitic laterite nickel ore by coal in the temperature range of 900–1250℃with the addition of CaO–CaF_(2)–H_(3)BO_(3) 被引量:2
2
作者 Zulfiadi Zulhan Windu Shalat 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第4期612-620,共9页
The method of producing ferronickel at low temperature(1250–1400℃)has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works,Japan.Limestone was used as an additive to adjust the slag composition for lower... The method of producing ferronickel at low temperature(1250–1400℃)has been applied since the 1950s at Nippon Yakin Kogyo,Oheyama Works,Japan.Limestone was used as an additive to adjust the slag composition for lowering the slag melting point.The ferronickel product was recovered by means of a magnetic separator from semi-molten slag and metal after water quenching.To increase the efficiency of magnetic separation,a large particle size of ferronickel is desired.Therefore,in this study,the influences of CaO,CaF_(2),and H_(3)BO_(3) additives on the evolution of ferronickel particle at≤1250℃were investigated.The experiments were conducted at 900–1250℃with the addition of CaO,CaF_(2),and H_(3)BO_(3).The reduction processes were carried out in a horizontal tube furnace for 2 h under argon atmosphere.At 1250℃,with the CaO addition of 10 wt%of the ore weight,ferronickel particles with size of 20μm were obtained.The ferronickel particle size increased to 165μm by adding 10 wt%CaO and 10 wt%CaF_(2).The addition of boric acid further increased the ferronickel particle size to 376μm,as shown by the experiments with the addition of 10 wt%CaO,10 wt%CaF_(2),and 10 wt%H_(3)BO_(3). 展开更多
关键词 saprolitic laterite nickel ore ferronickel particle LIME FLUORITE boric acid
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部