期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Effect of Copper on Growth Characteristics and Disease Control of the Recently Introduced <i>Guignardia citricarpa</i>on Citrus in Florida 被引量:1
1
作者 Katherine E. M. Hendricks Ryan S. Donahoo +1 位作者 Pamela D. Roberts Mary C. Christman 《American Journal of Plant Sciences》 2013年第2期282-290,共9页
Guignardia citricarpa, the plant pathogenic fungus that causes citrus black spot, was recently introduced into the United States. The development of this disease in the presence of multiple applications of copper per ... Guignardia citricarpa, the plant pathogenic fungus that causes citrus black spot, was recently introduced into the United States. The development of this disease in the presence of multiple applications of copper per year to manage citrus canker warrants an investigation into the effects of copper on growth of isolates of G. citricarpa from citrus in Florida. Guignardia citricarpa and G. mangiferae isolates, confirmed by internal transcribed spacer (ITS) sequencing of ribosomal DNA and DNA homology, were inoculated on non-amended media and media amended with 50 and 500 μg·ml-1 copper sulfate. Radial colony growth was assessed over a 26 to 59 day period. Copper reduced the growth of G. citricarpa isolates in media amended with 500 μg·ml-1 copper but had variable effects on radial growth in media amended with 50 μg·ml-1 copper. There was little effect of copper on the in vitro growth of G. mangiferae isolates. Field application of copper with and without an adjuvant for the control of citrus black spot was undertaken in a commercial grove in Florida in 2011. Spray applications were made on a 23.3 ± 4.7 day interval and fruit accessed between December 2011 and March 2012 for black spot symptoms. Copper failed to reduce the proportion of fruit exhibiting symptoms compared to that of the controls. 展开更多
关键词 COPPER Tolerance CITRUS Black Spot Guignardia mangiferae saprophyte CITRUS x sinensis
下载PDF
Distinguishing ectomycorrhizal and saprophytic fungi using carbon and nitrogen isotopic compositions 被引量:2
2
作者 Weiguo Hou Bin Lian +2 位作者 Hailiang Dong Hongchen Jiang Xingliang Wu 《Geoscience Frontiers》 SCIE CAS 2012年第3期351-356,共6页
Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be use... Ectomycorrhizal fungi, a group of widespread symbiotic fungi with plant, obtain carbon source from trees and improve plant mineral nutrient uptake with their widespread hyphal network. Ectomycorrhizal fungi can be used as inoculants to improve the survival rates of plantation. Saprophytic fungi use the nutrition from the debris of plant or animals, and it is difficult to distinguish the saprophytic and ectomycorrhizal fungi by morphological and anatomic methods. In this research, the differences of stable carbon and nitrogen isotopic compositions of these fungi were analyzed. The results showed that the abundances of 13C of were higher than those of ectomycorrhizal fungi and the abundances of 15N of saprophytic fungi were lower than those of ectomycorrhizal fungi. Such differences of stable carbon and nitrogen isotopic compositions between ectomycorrhizal fungi and saprophytic fungi can be ascribed to their different nutrition sources and ecological functions. These results collectively indicate that stable carbon and nitrogen isotopic compositions are an effective proxy for distinguishing between ectomycorrhizal and saprophytic fungi. 展开更多
关键词 Ectomycorrhizal fungi Saprophytic fungi Stable isotopiccompositions Ecological function
下载PDF
The genus Pythium in Taiwan,China(1)-a synoptic review
3
作者 Hon-Hing HO 《Frontiers in Biology》 CSCD 2009年第1期15-28,共14页
The genus Pythium,with slightly over 280 described species,has been classified traditionally with other filamentous,coenocytic,sporangia-producing fungi as“Phycomyetes”.However,with recent advances in chemical,ultra... The genus Pythium,with slightly over 280 described species,has been classified traditionally with other filamentous,coenocytic,sporangia-producing fungi as“Phycomyetes”.However,with recent advances in chemical,ultrastructural and molecular studies,Pythium spp.are now considered as“fungus-like organisms”or“pseudo-fungi”and are placed in the Kingdom Chromista or Kingdom Straminopila,distinct from the true fungi of the Kingdom Fungi or Kingdom Mycota.They are widely distributed throughout the world as soil saprophytes or plant pathogens.Because of the warm moist maritime climate,Taiwan,China,is especially rich in Pythium species.To date,48 species of Pythium have been reported from Taiwan,China,with the dominant species being Py.vexans,Py.spinosum,Py.splendens,Py.aphanidermatum,Py.dissotocum and Py.acanthicum.There is no definite geographical distribution of Pythium spp.in Taiwan,China.Twenty nine species of Pythium have proven to be plant pathogens attacking a wide variety of woody and herbaceous plants primarily causing pre-and post-emergence seedling damping-off,root rot,stem rot and rotting of fruits,tubers and ginger rhizomes,resulting in serious economic losses.The most important plant pathogenic species include Py.aphanidermatum and Py.Myriotylum,which are most active during the hot and wet summer months;whereas Py.splendens,Py.spinosum,Py.ultimum and Py.irregulare cause the greatest damage in the cool winter.Most Pythium spp.are non-specific pathogens,infecting mainly juvenile or succulent tissues.This review attempts to assess the taxonomic position of the genus Pythium and provide details of the historical development of the study of Pythium as pathogens in Taiwan,China,causing diseases of sugarcane,trees,vegetables,fruits,specialty crops and flowering plants,as well as measures to control these diseases.Of special note is the introduction of the S-H mixture which,when used as soil amendment,effectively controls many soil-borne Pythium diseases during the early stages of plant growth.The diversity of Pythium species in Taiwan,China,is discussed in comparison with the situation in the mainland of China and suggestions are made to fully utilize Pythium spp.as agents for biological control,in industry and medicine. 展开更多
关键词 Pythiaceae OOMYCETES CHROMISTA Straminolia plant pathogens soil-borne disease saprophytes MYCOPARASITES biodiversity
原文传递
Antibacterial mechanism of Ginkgo biloba leaf extract when applied to Shewanella putrefaciens and Saprophytic staphylococcus 被引量:12
4
作者 Nannan Zhang Weiqing Lan +2 位作者 Qian Wang Xiaohong Sun Jing Xie 《Aquaculture and Fisheries》 2018年第4期163-169,共7页
The antimicrobial mechanism of Ginkgo biloba leaf extracts(GBLE)when applied to predominant spoilage bacteria(Shewanella putrefaciens and Saprophytic staphylococcus)on refrigerated pomfret and minimal inhibitory conce... The antimicrobial mechanism of Ginkgo biloba leaf extracts(GBLE)when applied to predominant spoilage bacteria(Shewanella putrefaciens and Saprophytic staphylococcus)on refrigerated pomfret and minimal inhibitory concentrations(MICs)were measured by the plate counting method.GBLE at MIC and 2MIC were prepared in tryptic soy broth(TSB)medium and equivalent amounts of sterile distilled water were used in place of GBLE as a control group.The impact of GBLE on the growth of bacteria,the permeability of cell membrane,and cell wall were also investigated by growth curve of bacteria,alkaline phosphates activity(AKP),and electrical conductivity.A scanning electron microscope(SEM)was used to study the effects of GBLE on the cellular structure of S.putrefaciens and S.staphylococcus.The results showed that the MICs of GBLE when applied to S.putrefaciens and S.staphylococcus were 100 mg/mL,the inhibitory rates of MIC and 2MIC concentrations of GBLE when applied to S.putrefaciens were 36.11%and 100%,while 27.78%and 62.22%for S.staphylococcus.Meanwhile,GBLE inhibited the growth of S.putrefaciens and S.staphylococcus until the number of cells at 2MIC values decreased to 0 and 4.29 log CFU/mL,respectively,after 24 h.The electrical conductivity of bacteria increased with GBLE treatment,which was followed by an increased leakage of AKP.The SEM revealed that the structure of bacterial cells was destroyed and the bacteria began to be adhere to each other.The inhibition effect of GBLE when applied to S.putrefaciens and S.staphylococcus was related to the damage of cell membrane and cell wall.It was also revealed that GBLE damages the morphology of bacteria and had stronger effects on the cell membrane of S.putrefaciens than that of S.staphylococcus. 展开更多
关键词 Ginkgo biloba leaf extracts(GBLE) Shewanella putrefaciens Saprophytic staphylococcus Antibacterial mechanism
原文传递
Secretome profiling reveals temperature-dependent growth of Aspergillus fumigatus 被引量:2
5
作者 Dongyu Wang Lili Zhang +1 位作者 Haiyue Zou Lushan Wang 《Science China(Life Sciences)》 SCIE CAS CSCD 2018年第5期578-592,共15页
Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteas... Aspergillus fumigatus is a ubiquitous opportunistic fungus. In this study, systematic analyses were carried out to study the temperature adaptability of A. fumigatus. A total of 241 glycoside hydrolases and 69 proteases in the secretome revealed the strong capability of A. fumigatus to degrade plant biomass and protein substrates. In total, 129 pathogenesis-related proteins detected in the secretome were strongly correlated with glycoside hydrolases and proteases. The variety and abundance of proteins remained at temperatures of 34°C–45°C. The percentage of endo-1,4-xylanase increased when the temperature was lowered to 20°C, while the percentage of cellobiohydrolase increased as temperature was increased, suggesting that the strain obtains carbon mainly by degrading xylan and cellulose, and the main types of proteases in the secretome were aminopeptidases and carboxypeptidases. Only half of the proteins were retained and their abundance declined to 9.7% at 55°C. The activities of the remaining β-glycosidases and proteases were merely 35% and 24%, respectively, when the secretome was treated at 60°C for 2 h. Therefore, temperatures >60°C restrict the growth of A. fumigatus. 展开更多
关键词 Aspergillus fumigatus functional secretome temperature adaptability opportunistic pathogen saprophytic fungus
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部