期刊文献+
共找到377篇文章
< 1 2 19 >
每页显示 20 50 100
Revealing the key role of non-solvating diluents for fast-charging and low temperature Li-ion batteries 被引量:1
1
作者 Yuping Zhang Siyin Li +8 位作者 Junkai Shi Jiawei Lai Ziyue Zhuang Jingwen Liu Wenming Yang Liang Ma Yue-Peng Cai Jijian Xu Qifeng Zheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期171-180,共10页
Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to t... Fast-charging and low temperature operation are of vital importance for the further development of lithium-ion batteries(LIBs),which is hindered by the utilization of conventional carbonate-based electrolytes due to their slow kinetics,narrow operating temperature and voltage range.Herein,an acetonitrile(AN)-based localized high-concentration electrolyte(LHCE)is proposed to retain liquid state and high ionic conductivity at ultra-low temperatures while possessing high oxidation stability.We originally reveal the excellent thermal shielding effect of non-solvating diluent to prevent the aggregation of Li^(+) solvates as temperature drops,maintaining the merits of fast Li transport and facile desolvation as at room temperature,which bestows the graphite electrode with remarkable low temperature performance(264 mA h g^(-1) at-20 C).Remarkably,an extremely high capacity retention of 97%is achieved for high-voltage high-energy graphite||NCM batteries after 250 cycles at-20 C,and a high capacity of 110 mA h g^(-1)(71%of its room-temperature capacity)is retained at-30°C.The study unveils the key role of the non-solvating diluents and provides instructive guidance in designing electrolytes towards fast-charging and low temperature LIBs. 展开更多
关键词 li-ion battery Fast-charging Low temperature Non-solvating diluent Shielding effect
下载PDF
A comprehensive review on the resynthesis of ternary cathode active materials from the leachate of Li-ion batteries
2
作者 Dongwoo Kim Hyeoncheol Joo +8 位作者 Chanmin Kim Seoa Kim Wan-Yi Kim Sangwoo Han Joongkil Park Soyeon Park Heechul Jung Sanghyuk Park Kyungjung Kwon 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期446-463,I0010,共19页
This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recyclin... This review highlights the importance of recovering valuable metals from spent Li-ion battery(LIB)cathodes through the resynthesis of cathode active materials(CAMs).The resynthesis process of CAMs,a promising recycling method that directly produces CAM precursors from LIB leachate,is explored.This process encompasses six key steps,including pretreatment,leaching,purification,adjustment of metal concentrations,precursor synthesis,and sintering.The review also investigates the potential introduction of impurity elements during CAM resynthesis and provides tolerance levels for these impurities based on thorough reference analysis.Additionally,it addresses challenges related to the commercialization of the resynthesis process.Notably,this review represents the first comprehensive assessment of CAM resynthesis,including the systematic evaluation of 12 impurity elements(Fe,Li,Al,Cu,C,P,F,Na,Cl,S,Mg,and Zn).Overall,this comprehensive review is poised to support the commercial development of resynthesized CAMs by offering valuable guidelines for managing impurities and streamlining the purification process. 展开更多
关键词 li-ion battery Recycling Resynthesis LEACHATE IMPURITY
下载PDF
New insights into the pre-lithiation kinetics of single-crystalline Ni-rich cathodes for long-life Li-ion batteries
3
作者 Qiang Han Lele Cai +3 位作者 Zhaofeng Yang Yanjie Hu Hao Jiang Chunzhong Li 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期556-564,共9页
Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in uns... Developing single-crystalline Ni-rich cathodes is an effective strategy to improve the safety and cycle life of Li-ion batteries(LIBs).However,the easy-to-loss of Li and O in high-temperature lithiation results in unsatisfactory ordered layered structure and stoichiometry.Herein,we demonstrate the synthesis of highly-ordered and fully-stoichiometric single-crystalline LiNi_(0.83)Co_(0.12)Mn_(0.05)O_(2)(SC-NCM83)cathodes by the regulation of pre-lithiation kinetics.The well-balanced pre-lithiation kinetics have been proved to greatly improve the proportion of layered phase in the intermediate by inhibiting the formation of metastable spinel phase,which promoted the rapid transformation of the intermediate into highly-ordered layered SC-NCM83 in the subsequent lithiation process.After coating a layer of Li_(2)O–B_(2)O_(3),the resultant cathodes deliver superior cycling stability with 90.9%capacity retention at 1C after 300 cycles in pouch-type full batteries.The enhancement mechanism has also been clarified.These findings exhibit fundamental insights into the pre-lithiation kinetics process for guiding the synthesis of high-quality singlecrystalline Ni-rich cathodes. 展开更多
关键词 Single-crystalline cathode Ni-rich oxides Pre-lithiation li-ion batteries Surface modification
下载PDF
Atomistic understanding of capacity loss in LiNiO_(2)for high-nickel Li-ion batteries:First-principles study
4
作者 彭率 陈丽娟 +1 位作者 何长春 杨小宝 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期625-629,共5页
Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formati... Combining the first-principles calculations and structural enumeration with recognition,the delithiation process of LiNiO_(2)is investigated,where various supercell shapes are considered in order to obtain the formation energy of Li_(x)NiO_(2).Meanwhile,the voltage profile is simulated and the ordered phases of lithium vacancies corresponding to concentrations of 1/4,2/5,3/7,1/2,2/3,3/4,5/6,and 6/7 are predicted.To understand the capacity decay in the experiment during the charge/discharge cycles,deoxygenation and Li/Ni antisite defects are calculated,revealing that the chains of oxygen vacancies will be energetically preferrable.It can be inferred that in the absence of oxygen atom in high delithiate state,the diffusion of Ni atoms is facilitated and the formation of Li/Ni antisite is induced. 展开更多
关键词 li-ion battery ground state formation energy oxygen vacancy Li/Ni antisite
下载PDF
A class of Ga-Al-P-based compounds with disordered lattice as advanced anode materials for Li-ion batteries 被引量:1
5
作者 Yanhong Li Peixun Xiong +2 位作者 Lei Zhang Songliu Yuan Wenwu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期12-21,共10页
Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile ... Phosphides possess large reversible capacity, small voltage hysteresis, and high energy efficiency, thus promising to be new anode candidates to replace commercial graphite for Li-ion batteries(LIBs).Through a facile mechanochemistry method, we prepare a novel ternary phosphide of Ga0.5Al0.5P whose crystalline structure is determined to be a cation-disordered cubic zinc sulfide structure according to XRD refinement. As an anode for LIBs, the Ga0.5Al0.5P delivers a reversible capacity of 1,352 mA h g^(-1)at100 mA g^(-1)with an initial Coulombic efficiency(ICE) up to 90.0% based on a reversible Li-storage mechanism integrating intercalation and subsequent conversion processes as confirmed by various characterizations techniques including in-situ XRD, ex-situ Raman, and XPS and electrochemical characterizations.Graphite-modified Ga0.5Al0.5P exhibits a long-lasting cycling stability of retaining 1,182 mA h g^(-1)after300 cycles at 100 m A g^(-1), and 625 mA h g^(-1)after 800 cycles at 2,000 mA g^(-1), and a high-rate performance of remaining 342 m A h g^(-1)at 20,000 mA g^(-1). The outstanding electrochemical performances can be attributed to enhanced reaction kinetics enabled by the capacitive behaviors and the faster Liion diffusion enabled by the cation-mixing. Importantly, by tuning the cationic ratio, we develop a novel series of cation-mixed compounds of Ga_(1/3)Al_(2/3)P, Ga_(1/4)Al_(3/4)P, Ga_(1/5)Al_(4/5)P, Ga_(2/3)Al_(1/3)P, Ga_(3/4)Al_(1/4)P, and Ga_(4/5)Al_(1/5)P, which demonstrate large capacity, high ICE, and suitable anode potentials. Broadly, these compounds with disordered lattices probably present novel physicochemical properties, and high electrochemical performances, thus providing a new perspective for new materials design. 展开更多
关键词 Multinary phosphides Disordered lattice ANODE li-ion batteries
下载PDF
Overview of multi-stage charging strategies for Li-ion batteries 被引量:2
6
作者 Muhammad Usman Tahir Ariya Sangwongwanich +1 位作者 Daniel-Ioan Stroe Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第9期228-241,共14页
To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the... To reduce the carbon footprint in the transportation sector and improve overall vehicle efficiency,a large number of electric vehicles are being manufactured.This is due to the fact that environmental concerns and the depletion of fossil fuels have become significant global problems.Lithium-ion batteries(LIBs)have been distinguished themselves from alternative energy storage technologies for electric vehicles(EVs) due to superior qualities like high energy and power density,extended cycle life,and low maintenance cost to a competitive price.However,there are still certain challenges to be solved,like EV fast charging,longer lifetime,and reduced weight.For fast charging,the multi-stage constant current(MSCC) charging technique is an emerging solution to improve charging efficiency,reduce temperature rise during charging,increase charging/discharging capacities,shorten charging time,and extend the cycle life.However,there are large variations in the implementation of the number of stages,stage transition criterion,and C-rate selection for each stage.This paper provides a review of these problems by compiling information from the literature.An overview of the impact of different design parameters(number of stages,stage transition,and C-rate) that the MSCC charging techniques have had on the LIB performance and cycle life is described in detail and analyzed.The impact of design parameters on lifetime,charging efficiency,charging and discharging capacity,charging speed,and rising temperature during charging is presented,and this review provides guidelines for designing advanced fast charging strategies and determining future research gaps. 展开更多
关键词 Multi-stage constant current(MSCC)charging Electric vehicles(EVs) li-ion batteries(LIBs) Fast charging strategies
下载PDF
Single-Phase Ternary Compounds with a Disordered Lattice and Liquid Metal Phase for High-Performance Li-Ion Battery Anodes 被引量:1
7
作者 Yanhong Li Lei Zhang +8 位作者 Hung-Yu Yen Yucun Zhou Gun Jang Songliu Yuan Jeng-Han Wang Peixun Xiong Meilin Liu Ho Seok Park Wenwu Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第5期36-50,共15页
Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-io... Si is considered as the promising anode materials for lithium-ion batteries(LIBs)owing to their high capacities of 4200 mAh g-1and natural abundancy.However,severe electrode pulverization and poor electronic and Li-ionic conductivities hinder their practical applications.To resolve the afore-mentioned problems,we first demonstrate a cation-mixed disordered lattice and unique Li storage mechanism of single-phase ternary GaSiP_(2)compound,where the liquid metallic Ga and highly reactive P are incorporated into Si through a ball milling method.As confirmed by experimental and theoretical analyses,the introduced Ga and P enables to achieve the stronger resistance against volume variation and metallic conductivity,respectively,while the cation-mixed lattice provides the faster Li-ionic diffusion capability than those of the parent GaP and Si phases.The resulting GaSiP_(2)electrodes delivered the high specific capacity of 1615 mAh g-1and high initial Coulombic efficiency of 91%,while the graphite-modified GaSiP_(2)(GaSiP_(2)@C)achieved 83%of capacity retention after 900 cycles and high-rate capacity of 800 at 10,000 mA g-1.Furthermore,the LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)//Ga SiP_(2)@C full cells achieved the high specific capacity of 1049 mAh g-1after 100 cycles,paving a way for the rational design of high-performance LIB anode materials. 展开更多
关键词 Multinary compounds Liquid metal GaSiP_(2) Disordered lattice li-ion batteries
下载PDF
Insight into the effect of thick graphite electrodes towards high-performance cylindrical Ni-rich NCA90 Li-ion batteries 被引量:1
8
作者 Nattanon Joraleechanchai Thitiphum Sangsanit +2 位作者 Kan Homlamai Purin Krapong Montree Sawangphruk 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期322-333,I0009,共13页
This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-t... This study explored the complex effect of graphite tortuosity on the electrochemical performance of Ni-rich NCA90 Li-ion batteries(LIBs).Different levels of graphite anode tortuosity were analyzed,revealing that low-tortuosity electrodes had better graphite utilization.The in-plane tortuosities of the graphite anode electrodes examined were 1.70,1.94,2.05,and 2.18,while their corresponding through-plane tortuosities were 4.74,6.94,8.19,and 9.80.In-operando X-ray diffraction and differential electrochemical mass spectrometry were employed to investigate the charge storage mechanism and gas evolution.The study revealed that while graphite electrode tortuosity impacted the amount of Li present in the lithiated graphite phase due to diffusion constraints,it did not affect gas generation.The Li-ion utilization in low-tortuosity electrodes was higher than that in high-tortuosity electrodes because of solid-diffusion limitations.Additionally,the galvanostatic intermittent titration technique(GITT) was employed to investigate a lithium-ion diffusion coefficient.Our results indicate that the lithium-ion diffusion coefficient exhibits a significant difference only during LiC_(6) phase transition.We also observed that the use of a lower tortuosity electrode leads to improved lithium-ion insertion.Consequently,graphite utilization is influenced by the porous electrode design.Safety tests adhering to UN38.3 guidelines verified battery safety.The study demonstrated the practical application of optimized NCA90 LIB cells with diverse graphite electrode tortuosities in a high-performance Lamborghini GoKart,paving the way for further advancements in Ni-rich LIB technology. 展开更多
关键词 li-ion batteries TORTUOSITY Ni-rich NCA90 cathode On-line gas detection In-operando XRD
下载PDF
Progress,challenges,and prospects of spent lithium-ion batteries recycling:A review 被引量:2
9
作者 Pengwei Li Shaohua Luo +7 位作者 Lin Zhang Qiuyue Liu Yikai Wang Yicheng Lin Can Xu Jia Guo Peam Cheali Xiaoning Xia 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期144-171,I0005,共29页
The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,batter... The recycling and reutilization of spent lithium-ion batteries(LIBs)have become an important measure to alleviate problems like resource scarcity and environmental pollution.Although some progress has been made,battery recycling technology still faces challenges in terms of efficiency,effectiveness and environmental sustainability.This review aims to systematically review and analyze the current status of spent LIB recycling,and conduct a detailed comparison and evaluation of different recycling processes.In addition,this review introduces emerging recycling techniques,including deep eutectic solvents,molten salt roasting,and direct regeneration,with the intent of enhancing recycling efficiency and diminishing environmental repercussions.Furthermore,to increase the added value of recycled materials,this review proposes the concept of upgrading recycled materials into high value-added functional materials,such as catalysts,adsorbents,and graphene.Through life cycle assessment,the paper also explores the economic and environmental impacts of current battery recycling and highlights the importance that future recycling technologies should achieve a balance between recycling efficiency,economics and environmental benefits.Finally,this review outlines the opportunities and challenges of recycling key materials for next-generation batteries,and proposes relevant policy recommendations to promote the green and sustainable development of batteries,circular economy,and ecological civilization. 展开更多
关键词 Spent li-ion batteries RECYCLE Direct regeneration High-value conversion Functional materials
下载PDF
Stable Cycling of All-Solid-State Lithium Metal Batteries Enabled by Salt Engineering of PEO-Based Polymer Electrolytes 被引量:1
10
作者 Lujuan Liu Tong Wang +6 位作者 Li Sun Tinglu Song Hao Yan Chunli Li Daobin Mu Jincheng Zheng Yang Dai 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期67-74,共8页
Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibi... Poly(ethylene oxide)(PEO)-based polymer electrolytes show the prospect in all-solid-state lithium metal batteries;however,they present limitations of low room-temperature ionic conductivity,and interfacial incompatibility with high voltage cathodes.Therefore,a salt engineering of 1,1,2,2,3,3-hexafluoropropane-1,3-disulfonimide lithium salt(LiHFDF)/LiTFSI system was developed in PEO-based electrolyte,demonstrating to effectively regulate Li ion transport and improve the interfacial stability under high voltage.We show,by manipulating the interaction between PEO matrix and TFSI^(-)-HFDF^(-),the optimized solid-state polymer electrolyte achieves maximum Li+conduction of 1.24×10^(-4)S cm^(-1)at 40℃,which is almost 3 times of the baseline.Also,the optimized polymer electrolyte demonstrates outstanding stable cycling in the LiFePO_(4)/Li and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)/Li(3.0-4.4 V,200 cycles)based all-solid-state lithium batteries at 40℃. 展开更多
关键词 all-solid-state battery high voltage li-ion conductivity molecular interaction poly(ethylene oxide)
下载PDF
Photoinduced Cu^(+)/Cu^(2+)interconversion for enhancing energy conversion and storage performances of CuO based Li-ion battery
11
作者 Qiuman Zhang Meng Wei +7 位作者 Qianwen Dong Qiongzhi Gao Xin Cai Shengsen Zhang Teng Yuan Feng Peng Yueping Fang Siyuan Yang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期83-91,共9页
Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper... Pursuing appropriate photo-active Li-ion storage materials and understanding their basic energy storage/conversion principle are pretty crucial for the rapidly developing photoassisted Li-ion batteries(PA-LIBs).Copper oxide(CuO)is one of the most popular candidates in both LIBs and photocatalysis.While CuO based PA-LIBs have never been reported yet.Herein,one-dimensional(1D)CuO nanowire arrays in situ grown on a three-dimensional(3D)copper foam support were employed as dualfunctional photoanode for both‘solar-to-electricity’and‘electricity-to-chemical’energy conversion in the PA-LIBs.It is found that light energy can be indeed stored and converted into electrical energy through the assembled CuO based PA-LIBs.Without external power source,the photo conversion efficiency of CuO based photocell reaches about 0.34%.Impressively,at a high current density of 4000 m A g^(-1),photoassisted discharge and charge specific capacity of CuO based PA-LIBs respectively receive 64.01%and 60.35%enhancement compared with the net electric charging and discharging process.Mechanism investigation reveals that photogenerated charges from CuO promote the interconversion between Cu^(2+)and Cu^(+)during the discharging/charging process,thus forcing the lithium storage reaction more completely and increasing the specific capacity of the PA-LIBs.This work can provide a general principle for the development of other high-efficient semiconductor-based PA-LIBs. 展开更多
关键词 li-ion batteries Energy conversion and storage Photo rechargeable Electrochemistry Copper oxide
下载PDF
Self-actuating protection mechanisms for safer lithium-ion batteries
12
作者 Yang Luo Chunchun Sang +3 位作者 Kehan Le Hao Chen Hui Li Xinping Ai 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第7期181-198,共18页
Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,whic... Safety issue is still a problem nowadays for the large-scale application of lithium-ion batteries(LIBs)in electric vehicles and energy storage stations.The unsafe behaviors of LIBs arise from the thermal run-away,which is intrinsically triggered by the overcharging and overheating.To improve the safety of LIBs,various protection strategies based on self-actuating reaction control mechanisms(SRCMs)have been proposed,including redox shuttle,polymerizable monomer additive,potential-sensitive separator,thermal shutdown separator,positive-temperature-coefficient electrode,thermally polymerizable addi-tive,and reversible thermal phase transition electrolyte.As build-in protection mechanisms,these meth-ods can sensitively detect either the temperature change inside battery or the potential change of the electrode,and spontaneously shut down the electrode reaction at risky conditions,thus preventing the battery from going into thermal runaway.Given their advantages in enhancing the intrinsic safety of LIBs,this paper overviews the research progresses of SRCMs after a brief introduction of thermal runaway mechanism and limitations of conventional thermal runaway mitigating measures.More importantly,the current states and issues,key challenges,and future developing trends of SRCTs are also discussed and outlined from the viewpoint of practical application,aiming at providing insights and guidance for developing more effective SRCMs for LIBs. 展开更多
关键词 li-ion battery SAFETY Thermal runaway Thermal protection Overcharge protection
下载PDF
A high Li-ion diffusion kinetics in multidimensional and compact-structured electrodes via vacuum filtration casting
13
作者 Jieqiong Li Ting Ouyang +3 位作者 Lu Liu Shu Jiang Yongchao Huang M.-Sadeeq Balogun 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期368-376,I0010,共10页
Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is ... Manufacturing process,diffusion co-efficient and areal capacity are the three main criteria for regulating thick electrodes for lithium-ion batteries(LIBs).However,simultaneously regulating these criteria for LIBs is desirable but remains a significant challenge.In this work,niobium pentoxide(Nb_(2)O_(5))anode and lithium iron phosphate(LiFePO_(4))cathode materials were chosen as the model materials and demonstrate that these three parameters can be simultaneously modulated by incorporation of micro-carbon fibers(MCF)and carbon nanotubes(CNT)with both Nb_(2)O_(5) and LFP via vacuum filtration approach.Both as-prepared MNC-20 anode and MLC-20 cathode achieves high reversible areal capacity of≈5.4 m A h cm^(-2)@0.1 C and outstanding Li-ion diffusion coefficients of≈10~(-8)cm~2 s~(-1)in the half-cell configuration.The assembled MNC-20‖MLC-20 full cell LIB delivers maximum energy and power densities of244.04 W h kg^(-1)and 108.86 W kg^(-1),respectively.The excellent electrochemical properties of the asprepared thick electrodes can be attributed to the highly conductive,mechanical compactness and multidimensional mutual effects of the MCF,CNT and active materials that facilitates rapid Li-ion diffusion kinetics.Furthermore,electrochemical impedance spectroscopy(EIS),symmetric cells analysis,and insitu Raman techniques clearly validates the enhanced Li-ion diffusion kinetics in the present architecture. 展开更多
关键词 Thick electrodes Carbon nanotubes li-ion diffusion co-efficient Vacuum filtration technique High areal capacity Lithium-ion batteries
下载PDF
A multi-kernel-shell indium selenide@carbon nanosphere enabling high-performance lithium-ion batteries
14
作者 Sihao Wang Zhuoming Jia +10 位作者 Ying Zhao Yanhong Li Xianglong Kong Yongde Yan Fei He Milin Zhang Linzhi Wu Piaoping Yang Wenwu Li Meilin Liu Zhiliang Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期698-708,共11页
Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their... Indium selenide has garnered significant attention for high volumetric capacities,but is currently plagued by the sluggish charge transfer kinetics,severe volume effect,and rapid capacity degradation that hinder their practical applications.Herein,we design,synthesize,and characterize a multi-kernel-shell structure comprised of indium selenide encapsulated within carbon nanospheres(referred to as m-K-S In_(2)Se_(3)@C)through an integrated approach involving a hydrothermal method followed by a gaseous selenization process.Importantly,experimental measurements and density functional theory calculations confirm that the m-K-S In_(2)Se_(3)@C not only improve the adsorption capability for Li-ions but also lower the energy barrier for Li-ions diffusion.Profiting from numerous contact points,shorter diffusion distances and an improved volume buffering effect,the m-K-S In_(2)Se_(3)@C achieves an 800 mA h g^(−1)capacity over 1000 loops at 1000 mA g^(−1),a 520 mA h g^(−1)capacity at 5000 mA g^(−1)and an energy density of 270 Wh kg^(−1)when coupled with LiFePO4,surpassing most related anodes reported before.Broadly,the m-K-S structure with unique nano-micro structure offers a new approach to the design of advanced anodes for LIBs. 展开更多
关键词 Multi-kernel-shell structure In_(2)Se_(3) ANODE li-ion batteries
下载PDF
Chip Design of Li-Ion Battery Charger Operating in Constant-Current/Constant-Voltage Modes 被引量:7
15
作者 陈琛 何乐年 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2007年第7期1030-1035,共6页
A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the ... A design for a Li-ion battery charger IC that can operate in a constant current-constant voltage (CC- CV) charge mode is proposed. In the CC-CV charge mode,the charger IC provides a constant charging current at the beginning, and then the charging current begins to decrease before the battery voltage reaches its final value. After the battery voltage reaches its final value and remains constant,the charging current is further reduced. This approach prevents charging the battery with full current near its saturated voltage,which can cause heating. The novel design of the core of the charger IC realizes the proposed CC-CV charge mode. The chip was implemented in a CSMC 0.6μm CMOS mixed signal process. The experimental results verify the realization of the proposed CC- CV charge mode. The voltage of the battery after charging is 4. 1833V. 展开更多
关键词 li-ion battery charger constant current-constant voltage charge modes CMOS analog circuit
下载PDF
Si-Based Anode Materials for Li-Ion Batteries:A Mini Review 被引量:19
16
作者 Delong Ma Zhanyi Cao Anming Hu 《Nano-Micro Letters》 SCIE EI CAS 2014年第4期347-358,共12页
Si has been considered as one of the most attractive anode materials for Li-ion batteries(LIBs) because of its high gravimetric and volumetric capacity. Importantly, it is also abundant, cheap, and environmentally ben... Si has been considered as one of the most attractive anode materials for Li-ion batteries(LIBs) because of its high gravimetric and volumetric capacity. Importantly, it is also abundant, cheap, and environmentally benign. In this review, we summarized the recent progress in developments of Si anode materials. First, the electrochemical reaction and failure are outlined, and then, we summarized various methods for improving the battery performance, including those of nanostructuring, alloying, forming hierarchic structures, and using suitable binders. We hope that this review can be of benefit to more intensive investigation of Si-based anode materials. 展开更多
关键词 li-ion batteries ANODE Si High capacity NANOMATERIALS
下载PDF
Controlled synthesis of nanosized Si by magnesiothermic reduction from diatomite as anode material for Li-ion batteries 被引量:11
17
作者 Li-fen Guo Shi-yun Zhang +6 位作者 Jian Xie Dong Zheng Yuan Jin Kang-yan Wang Da-gao Zhuang Wen-quan Zheng Xin-bing Zhao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2020年第4期515-525,共11页
Li-ion batteries(LIBs)have demonstrated great promise in electric vehicles and hybrid electric vehicles.However,commercial graphite materials,the current predominant anodes in LIBs,have a low theoretical capacity of o... Li-ion batteries(LIBs)have demonstrated great promise in electric vehicles and hybrid electric vehicles.However,commercial graphite materials,the current predominant anodes in LIBs,have a low theoretical capacity of only 372 mAh·g?1,which cannot meet the everincreasing demand of LIBs for high energy density.Nanoscale Si is considered an ideal form of Si for the fabrication of LIB anodes as Si–C composites.Synthesis of nanoscale Si in a facile,cost-effective way,however,still poses a great challenge.In this work,nanoscale Si was prepared by a controlled magnesiothermic reaction using diatomite as the Si source.It was found that the nanoscale Si prepared under optimized conditions(800°C,10 h)can deliver a high initial specific capacity(3053 mAh·g?1 on discharge,2519 mAh·g?1 on charge)with a high first coulombic efficiency(82.5%).When using sand-milled diatomite as a precursor,the obtained nanoscale Si exhibited a well-dispersed morphology and had a higher first coulombic efficiency(85.6%).The Si–C(Si:graphite=1:7 in weight)composite using Si from the sand-milled diatomite demonstrated a high specific capacity(over 700 mAh·g?1 at 100 mA·g?1),good rate capability(587 mAh·g?1 at 500 mA·g?1),and a long cycle life(480 mAh·g?1 after 200 cycles at 500 mA·g?1).This work gives a facile method to synthesize nanoscale Si with both high capacity and high first coulombic efficiency. 展开更多
关键词 silicon ANODE magnesiothermic reduction DIATOMITE li-ion batteries
下载PDF
Research on cathode material of Li-ion battery by yttrium doping 被引量:15
18
作者 田彦文 康晓雪 +2 位作者 刘丽英 徐茶青 曲涛 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第2期279-283,共5页
Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematic... Modification of LiFePO4, LiMn2O4 and Li1+xV3O8 by doping yttrium was investigated. The influences of doping Y on structure, morphology and electrochemical performance of cathode materials were investigated systematically. The results indicated that the mechanisms of Y doping in three cathode materials were different, so the influences on the material performance were different. The crystal structure of the three materials was not changed by Y doping. However, the crystal parameters were influenced. The crystal parameters of LiMn2O4 became smaller, and the interlayer distance of (100) crystal plane of Li1-xV3O8 was lengthened after Y doping. The grain size of Y-doped LiFePO4 became smaller and grain morphology became more regular than that of undoped LiFePO4. It indicated that Y doping had no influence on crystal particle and morphology of LiMn2O4. The morphology of Li1+xV3O8 became irregular and its size became larger with the increase of Y. For LiFePOaand Li1+xV3O8, both the initial discharge capacities and the cyclic performance were improved by Y doping. For LiMn2O4, the cyclic performance became better and the initial discharge capacities declined with increasing Y doping. 展开更多
关键词 YTTRIUM cathode material li-ion battery DOPING CONDUCTIVITY discharge capacity rare earths
下载PDF
Invited Review Reduction,reuse and recycle of spent Li-ion batteries for automobiles:A review 被引量:8
19
作者 Toyohisa Fujita Hao Chen +4 位作者 Kai-tuo Wang Chun-lin He You-bin Wang Gjergj Dodbiba Yue-zhou Wei 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2021年第2期179-192,共14页
The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long per... The demand for Li-ion batteries (LIBs) for vehicles is increasing. However, LIBs use valuable rare metals, such as Co and Li, aswell as environmentally toxic reagents. LIBs are also necessary to utilize for a long period and to recycle useful materials. The reduction, reuse,and recycle (3R) of spent LIBs is an important consideration in constructing a circular economy. In this paper, a flowsheet of the 3R of LIBs isproposed and methods to reduce the utilization of valuable rare metals and the amount of spent LIBs by remanufacturing used parts and designingnew batteries considering the concept of 3R are described. Next, several technological processes for the reuse and recycling of LIBs are introduced.These technologies include discharge, sorting, crushing, binder removal, physical separation, and pyrometallurgical and hydrometallurgicalprocessing. Each process, as well as the related physical, chemical, and biological treatments, are discussed. Finally, the problem of developedtechnologies and future subjects for 3R of LIBs are described. 展开更多
关键词 li-ion battery REDUCTION REUSE RECYCLE PROCESSING automobiles
下载PDF
High-Performance Li-ion Batteries and Super-capacitors Based on Prospective 1-D Nanomaterials 被引量:9
20
作者 Dandan Zhao Ying Wang Yafei Zhang 《Nano-Micro Letters》 SCIE EI CAS 2011年第1期62-71,共10页
One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacito... One-dimensional(1-D) nanomaterials with superior specific capacity, higher rate capability, better cycling peroperties have demonstrated significant advantages for high-performance Li-ion batteries and supercapacitors. This review describes some recent developments on the rechargeable electrodes by using 1-D nanomaterials(such as Li Mn2O4 nanowires, carbon nanofibers, Ni Mo O4 · n H2O nanorods, V2O5 nanoribbons,carbon nanotubes, etc.). New preparation methods and superior electrochemical properties of the 1-D nanomaterials including carbon nanotube(CNT), some oxides, transition metal compounds and polymers, and their composites are emphatically introduced. The VGCF/Li Fe PO4/C triaxial nanowire cathodes for Li-ion battery present a positive cycling performance without any degradation in almost theoretical capacity(160 m Ah/g).The Si nanowire anodes for Li-ion battery show the highest known theoretical charge capacity(4277 m Ah/g),that is about 11 times lager than that of the commercial graphite(372 m Ah/g). The SWCNT/Ni foam electrodes for supercapacitor display small equivalent series resistance(ESR, 52 m?) and impressive high power density(20 k W/kg). The advantages and challenges associated with the application of these materials for energy conversion and storage devices are highlighted. 展开更多
关键词 One-dimensional nanomaterials li-ion battery SUPERCAPACITOR Electrochemical property
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部