The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about ...The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.展开更多
The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zamb...The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks.展开更多
The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage var...The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.展开更多
基金‘Research on Deep Structural Differences between Potential Oil-rich Depressions in Offshore basins of China Sea’from the scientific and technological project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQN‘Resource Potential,Accumulation Mechanism and Breakthrough Direction of Potential Oil-rich Depressions in Offshore China Sea’,under contract No.220226220101+1 种基金the Project of China Geological Survey under contract No.DD20191003the National Natural Science Foundation of Shandong Province of China under contract No.ZR2022MD047。
文摘The Kyushu–Palau Ridge(KPR),an anti-S-shaped submarine highland at the center of the Philippine Sea Plate(PSP),is considered the residual arc of the Izu–Bonin–Mariana Island Arc,which retains key information about the cessation of the Western Philippine Basin(WPB)expansion and the Parece Vela Basin(PVB)breakup.Herein,using the new generation of satellite altimetry gravity data,high-precision seafloor topography data,and newly acquired ship-borne gravity data,the topographic and gravity characteristics of the KPR mid-southern section and adjacent region are depicted.The distribution characteristics of the faults were delineated using the normalized vertical derivative–total horizontal derivative method(NVDR-THDR)and the minimum curvature potential field separation method.The Moho depth and crustal thickness were inverted using the rapid inversion method for a double-interface model with depth constraints.Based on these results,the crust structure features in the KPR mid-southern section,and the“triangular”structure geological significance where the KPR and Central Basin Rift(CBR)of the WPB intersect are interpreted.The KPR crustal thickness is approximately 6–16 km,with a distinct discontinuity that is slightly thicker than the normal oceanic crust.The KPR mid-southern section crust structure was divided into four segments(S1–S4)from north to south,formed by the CBR eastward extension joint action and clockwise rotation of the PVB expansion axis and the Mindanao fault zone blocking effect.
基金The Petrochina Basic Prospective Science and Technology Research Project–Overseas deepwater ultra-deepwater oil and gas exploration technology research topic,under contract No.2021DJ2403。
文摘The Zambezi Delta basin is a passive marginal basin located on the East African coast that has good oil and gas exploration potential.Due to the special geological evolutionary background of the Beira High in the Zambezi Delta basin,it has a low gravity anomaly,and the existing seismic survey lines do not cover the whole basin;therefore,it is difficult to interpret the structural characteristics of the whole basin based solely on gravity or seismic data.Based on satellite altimetry gravity anomaly data,this study infers the distribution characteristics of faults in the Zambezi Delta basin by using the normalized vertical derivative of the total horizontal derivative(NVDR-THDR)technique.Then,constrained by seismic data,the gravity anomaly at the Moho interface is extracted by using the fast forward method of the double-interface model of the gravity anomaly,and this anomaly is then removed from the Bouguer gravity anomaly to obtain the sedimentary layer gravity anomaly.The thickness of the sedimentary strata is obtained by inversing the sedimentary basement depth of the whole basin.Then,uplifts and depressions are divided based on a sedimentary layer thickness of 3 km.This research demonstrates that the Zambezi Delta basin mainly features nearly SN-trending and NE-trending faults and that these faults exhibit east-west partitioning.The nearly SN-trending strike-slip faults controlled the sedimentary development of the basin,and the NE-trending tensile faults may have acted as migration channels for oil,gas and magma.The“overcompensation”effect of the Moho interface gravity anomaly on the gravity anomaly of the sedimentary layer is caused by the depression of the Moho interface beneath the Beira High,which results in a low gravity anomaly value for the Beira High.The pattern of uplifts and depressions trends NE and has the structural characteristics of east-west blocks.
基金supported by the National Natural Science Foundation of China(NSFC)Projects(11173050 and 11373059)
文摘The Gravity Recovery and Climate Experiment(GRACE) satellite mission provides a unique opportunity to quantitatively study terrestrial water storage(TWS) variations. In this paper,the terrestrial water storage variations in the Poyang Lake Basin are recovered from the GRACE gravity data from January 2003 to March 2014 and compared with the Global Land Data Assimilation System(GLDAS) hydrological models and satellite altimetry. Furthermore, the impact of soil moisture content from GLDAS and rainfall from the Tropical Rainfall Measuring Mission(TRMM) on TWS variations are investigated. Our results indicate that the TWS variations from GRACE, GLDAS and satellite altimetry have a general consistency. The TWS trends in the Poyang Lake Basin determined from GRACE, GLDAS and satellite altimetry are increasing at 0.0141 km^3/a, 0.0328 km^3/a and 0.0238 km^3/a,respectively during the investigated time period. The TWS is governed mainly by the soil moisture content and dominated primarily by the precipitation but also modulated by the flood season of the Yangtze River as well as the lake and river exchange water.