The data series of monthly clouldiness over global ocean from COADS was compared with that of from satellite Nimbus-7 during April 1979 to March 1985. The correspondence between them is good. Both the two methods of o...The data series of monthly clouldiness over global ocean from COADS was compared with that of from satellite Nimbus-7 during April 1979 to March 1985. The correspondence between them is good. Both the two methods of observation can provide useful information of the distribution of cloudiness and the two data sets can be mutually complementary.展开更多
Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear ...Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.展开更多
The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS...Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.展开更多
Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO sate...Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.展开更多
Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity comm...Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.展开更多
Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency referenc...Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.展开更多
The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one o...The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.展开更多
The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of ...The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.展开更多
This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform plana...This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing(CS)problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.展开更多
Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on be...Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.展开更多
A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Ea...A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.展开更多
Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scar...Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.展开更多
In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit...In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.展开更多
China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C...China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.展开更多
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol develo...Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.展开更多
Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentra...Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.展开更多
Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges...Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.展开更多
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
文摘The data series of monthly clouldiness over global ocean from COADS was compared with that of from satellite Nimbus-7 during April 1979 to March 1985. The correspondence between them is good. Both the two methods of observation can provide useful information of the distribution of cloudiness and the two data sets can be mutually complementary.
基金supported by the Key R&D Project of the Ministry of Science and Technology of China(2020YFB1808005)。
文摘Low Earth Orbit(LEO)multibeam satellites will be widely used in the next generation of satellite communication systems,whose inter-beam interference will inevitably limit the performance of the whole system.Nonlinear precoding such as Tomlinson-Harashima precoding(THP)algorithm has been proved to be a promising technology to solve this problem,which has smaller noise amplification effect compared with linear precoding.However,the similarity of different user channels(defined as channel correlation)will degrade the performance of THP algorithm.In this paper,we qualitatively analyze the inter-beam interference in the whole process of LEO satellite over a specific coverage area,and the impact of channel correlation on Signal-to-Noise Ratio(SNR)of receivers when THP is applied.One user grouping algorithm is proposed based on the analysis of channel correlation,which could decrease the number of users with high channel correlation in each precoding group,thus improve the performance of THP.Furthermore,our algorithm is designed under the premise of co-frequency deployment and orthogonal frequency division multiplexing(OFDM),which leads to more users under severe inter-beam interference compared to the existing research on geostationary orbit satellites broadcasting systems.Simulation results show that the proposed user grouping algorithm possesses higher channel capacity and better bit error rate(BER)performance in high SNR conditions relative to existing works.
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金Supported by the National Key Research and Development Program of China(No.2022YFF0801400)the National Natural Science Foundation of China(No.42176010)the Natural Science Foundation of Shandong Province,China(No.ZR2021MD022)。
文摘Accurately estimating the ocean subsurface salinity structure(OSSS)is crucial for understanding ocean dynamics and predicting climate variations.We present a convolutional neural network(CNN)model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations.We evaluated the performance of the CNN model in terms of its vertical and spatial distribution,as well as seasonal variation of OSSS estimation.Results demonstrate that the CNN model accurately estimates the most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS.However,the estimation accuracy of the CNN model varies with depth,with the most challenging depth being approximately 70 m,corresponding to the halocline layer.Validations of the CNN model’s accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes.The results show that the CNN model effectively captures the seasonal variability of salinity,demonstrating its high performance in salinity estimation using sea surface data.Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers,while sea surface height anomaly plays a more significant role in deeper layers.These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
基金supported by the National Key R&D Program of China under Grant 2020YFB1807900the National Natural Science Foundation of China (NSFC) under Grant 61931005Beijing University of Posts and Telecommunications-China Mobile Research Institute Joint Innovation Center。
文摘Lower Earth Orbit(LEO) satellite becomes an important part of complementing terrestrial communication due to its lower orbital altitude and smaller propagation delay than Geostationary satellite. However, the LEO satellite communication system cannot meet the requirements of users when the satellite-terrestrial link is blocked by obstacles. To solve this problem, we introduce Intelligent reflect surface(IRS) for improving the achievable rate of terrestrial users in LEO satellite communication. We investigated joint IRS scheduling, user scheduling, power and bandwidth allocation(JIRPB) optimization algorithm for improving LEO satellite system throughput.The optimization problem of joint user scheduling and resource allocation is formulated as a non-convex optimization problem. To cope with this problem, the nonconvex optimization problem is divided into resource allocation optimization sub-problem and scheduling optimization sub-problem firstly. Second, we optimize the resource allocation sub-problem via alternating direction multiplier method(ADMM) and scheduling sub-problem via Lagrangian dual method repeatedly.Third, we prove that the proposed resource allocation algorithm based ADMM approaches sublinear convergence theoretically. Finally, we demonstrate that the proposed JIRPB optimization algorithm improves the LEO satellite communication system throughput.
文摘Satellite communications, pivotal for global connectivity, are increasingly converging with cutting-edge mobile networks, notably 5G, B5G, and 6G. This amalgamation heralds the promise of universal, high-velocity communication, yet it is not without its challenges. Paramount concerns encompass spectrum allocation, the harmonization of network architectures, and inherent latency issues in satellite transmissions. Potential mitigations, such as dynamic spectrum sharing and the deployment of edge computing, are explored as viable solutions. Looking ahead, the advent of quantum communications within satellite frameworks and the integration of AI spotlight promising research trajectories. These advancements aim to foster a seamless and synergistic coexistence between satellite communications and next-gen mobile networks.
基金supported by the National Key Research and Development Program of China(Grant No.2021YFA1402100)。
文摘Realization of high performance satellite onboard clock is vital for various positioning, navigation, and timing applications. For further improvement of the synchronization-based satellite time and frequency references, we propose a geosynchronous(GEO) satellite virtual clock concept based on ground–satellite synchronization and present a beacon transponder structure for its implementation(scheduled for launch in 2025), which does not require atomic clocks to be mounted on the satellite. Its high performance relies only on minor modifications to the existing transponder structure of GEO satellites. We carefully model the carrier phase link and analyze the factors causing link asymmetry within the special relativity. Considering that performance of such synchronization-based satellite clocks is primarily limited by the link's random phase noise, which cannot be adequately modeled, we design a closed-loop experiment based on commercial GEO satellites for pre-evaluation. This experiment aims at extracting the zero-means random part of the ground-satellite Ku-band carrier phase via a feedback loop. Ultimately, we obtain a 1σ value of 0.633 ps(two-way link), following the Gaussian distribution. From this result, we conclude that the proposed real-time Einstein-synchronization-defined satellite virtual clock can achieve picosecond-level replication of onboard time and frequency.
基金supported by the National Key Research and Development Program of China(No.2020YFB1806000)。
文摘The high-speed movement of satellites makes it not feasible to directly apply the mature routing scheme on the ground to the satellite network.DT-DVTR in the snapshot-based connectionoriented routing strategy is one of the representative solutions,but it still has room for improvement in terms of routing stability.In this paper,we propose an improved scheme for connection-oriented routing strategy named the Minimal Topology Change Routing based on Collaborative Rules(MTCR-CR).The MTCR-CR uses continuous time static topology snapshots based on satellite status to search for intersatellite link(ISL)construction solutions that meet the minimum number of topology changes to avoid route oscillations.The simulation results in Beidou-3 show that compared with DT-DVTR,MTCR-CR reduces the number of routing changes by about 92%,the number of path changes caused by routing changes is about38%,and the rerouting time is reduced by approximately 47%.At the same time,in order to show our algorithm more comprehensively,the same experimental index test was also carried out on the Globalstar satellite constellation.
基金supported by the National Natural Science Foundation of China (Grants Nos.42122047 and 42306270)the Basic Research Fund of the Chinese Academy of Meteorological Sciences (Grant Nos.2021Z006 and 2023Z013)。
文摘The downward shortwave radiation(DSR) is an important part of the Earth's energy balance, driving Earth's system's energy, water, and carbon cycles. Due to the harsh Antarctic environment, the accuracy of DSR derived from satellite and reanalysis has not been systematically evaluated over the transect of Zhongshan station to Dome A, East Antarctica.Therefore, this study aims to evaluate DSR reanalysis products(ERA5-Land, ERA5, MERRA-2) and satellite products(CERES and ICDR) in this area. The results indicate that DSR exhibits obvious monthly and seasonal variations, with higher values in summer than in winter. The ERA5-Land(ICDR) DSR product demonstrated the highest(lowest) accuracy,as evidenced by a correlation coefficient of 0.988(0.918), a root-mean-square error of 23.919(69.383) W m^(–2), a mean bias of –1.667(–28.223) W m^(–2) and a mean absolute error of 13.37(58.99) W m^(–2). The RMSE values for the ERA5-Land reanalysis product at seven stations, namely Zhongshan, Panda 100, Panda 300, Panda 400, Taishan, Panda 1100, and Kunlun, were 30.938, 29.447, 34.507, 29.110, 20.339, 17.267, and 14.700 W m^(-2), respectively;with corresponding bias values of 9.887, –12.159, –19.181, –15.519, –8.118, 6.297, and 3.482 W m^(–2). Regarding seasonality, ERA5-Land, ERA5,and MERRA-2 reanalysis products demonstrate higher accuracies during spring and summer, while ICDR products are least accurate in autumn. Cloud cover, water vapor, total ozone, and severe weather are the main factors affecting DSR. The error of DSR products is greatest in coastal areas(particularly at the Zhongshan station) and decreases towards the inland areas of Antarctica.
基金supported by the National Key R&D Program of China under Grant 2023YFB2904703the National Natural Science Foundation of China under Grant 62341110,62371122 and 62322104+1 种基金the Jiangsu Province Basic Research Project under Grant BK20192002the Fundamental Research Funds for the Central Universities under Grant 2242022k30005 and 2242023K5003。
文摘This paper investigates the low earth orbit(LEO)satellite-enabled coded compressed sensing(CCS)unsourced random access(URA)in orthogonal frequency division multiple access(OFDMA)framework,where a massive uniform planar array(UPA)is equipped on the satellite.In LEO satellite communications,unavoidable timing and frequency offsets cause phase shifts in the transmitted signals,substantially diminishing the decoding performance of current terrestrial CCS URA receiver.To cope with this issue,we expand the inner codebook with predefined timing and frequency offsets and formulate the inner decoding as a tractable compressed sensing(CS)problem.Additionally,we leverage the inherent sparsity of the UPA-equipped LEO satellite angular domain channels,thereby enabling the outer decoder to support more active devices.Furthermore,the outputs of the outer decoder are used to reduce the search space of the inner decoder,which cuts down the computational complexity and accelerates the convergence of the inner decoding.Simulation results verify the effectiveness of the proposed scheme.
基金supported by National Natural Science Foundation of China(62032003).
文摘Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost.
基金This work was supported by the National Key R&D Program of China(2021YFB2900604).
文摘A low-Earth-orbit(LEO)satellite network can provide full-coverage access services worldwide and is an essential candidate for future 6G networking.However,the large variability of the geographic distribution of the Earth’s population leads to an uneven service volume distribution of access service.Moreover,the limitations on the resources of satellites are far from being able to serve the traffic in hotspot areas.To enhance the forwarding capability of satellite networks,we first assess how hotspot areas under different load cases and spatial scales significantly affect the network throughput of an LEO satellite network overall.Then,we propose a multi-region cooperative traffic scheduling algorithm.The algorithm migrates low-grade traffic from hotspot areas to coldspot areas for forwarding,significantly increasing the overall throughput of the satellite network while sacrificing some latency of end-to-end forwarding.This algorithm can utilize all the global satellite resources and improve the utilization of network resources.We model the cooperative multi-region scheduling of large-scale LEO satellites.Based on the model,we build a system testbed using OMNET++to compare the proposed method with existing techniques.The simulations show that our proposed method can reduce the packet loss probability by 30%and improve the resource utilization ratio by 3.69%.
基金Supported by the International Partnership Program of Chinese Academy of Sciences(No.313GJHZ2022085 FN)the Dragon 5 Cooperation(No.59193)。
文摘Rapidly monitoring regional water quality and the changing trend is of great practical and scientific significance,especially for the Beijing-Tianjin-Hebei(BTH)region of China where water resources are relatively scarce and inland water bodies are generally small.The remote sensing data of the GF 1 satellite launched in 2013 have characteristics of high spatial and temporal resolution,which can be used for the dynamic monitoring of the water environment in small lakes and reservoirs.However,the water quality remote sensing monitoring model based on the GF 1 satellite data for lakes and reservoirs in BTH is still lacking because of the considerable differences in the optical characteristics of the lakes and reservoirs.In this paper,the typical reservoirs in BTH-Guanting Reservoir,Yuqiao Reservoir,Panjiakou Reservoir,and Daheiting Reservoir are taken as the study areas.In the atmospheric correction of GF 1-WFV,the relative radiation normalized atmospheric correction was adopted after comparing it with other methods,such as 6 S and FLAASH.In the water clarity retrieval,a water color hue angle based model was proposed and outperformed other available published models,with the R 2 of 0.74 and MRE of 31.7%.The clarity products of the four typical reservoirs in the BTH region in 2013-2019 were produced using the GF 1-WFV data.Based on the products,temporal and spatial changes in clarity were analyzed,and the main influencing factors for each water body were discussed.It was found that the clarity of Guanting,Daheiting,and Panjiakou reservoirs showed an upward trend during this period,while that of Yuqiao Reservoir showed a downward trend.In the influencing factors,the water level of the water bodies can be an important factor related to the water clarity changes in this region.
文摘In this paper, the problem of abnormal spectrum usage between satellite spectrum sharing systems is investigated to support multi-satellite spectrum coexistence. Given the cost of monitoring, the mobility of low-orbit satellites, and the directional nature of their signals, traditional monitoring methods are no longer suitable, especially in the case of multiple power level. Mobile crowdsensing(MCS), as a new technology, can make full use of idle resources to complete a variety of perceptual tasks. However, traditional MCS heavily relies on a centralized server and is vulnerable to single point of failure attacks. Therefore, we replace the original centralized server with a blockchain-based distributed service provider to enable its security. Therefore, in this work, we propose a blockchain-based MCS framework, in which we explain in detail how this framework can achieve abnormal frequency behavior monitoring in an inter-satellite spectrum sharing system. Then, under certain false alarm probability, we propose an abnormal spectrum detection algorithm based on mixed hypothesis test to maximize detection probability in single power level and multiple power level scenarios, respectively. Finally, a Bad out of Good(BooG) detector is proposed to ease the computational pressure on the blockchain nodes. Simulation results show the effectiveness of the proposed framework.
基金funded by the National Natural Science Foundation of China(No.42074017).
文摘China has successfully launched four Haiyang-2(HY-2)series altimetry satellites.HY-2A has attracted significant attention in gravity field recovery,but the performance of other HY-2 series satellites,including HY-2B/C/D,is seldom discussed.This study evaluated the performance of all the HY-2 series satellites in recovering marine gravity field.First,the crossover discrepancies in sea surface height of the four satellites,HY-2A,HY-2B,HY-2C,and HY-2D,were analyzed to assess their altimetry stability.It was found that HY-2B had the best altimetry quality,followed by HY-2D.Subsequently,different combina-tions of altimetry data were used to calculate vertical deflections and gravity anomalies in the South China Sea(112°E-119°E,12°N-20°N).The results showed that combining data from HY-2B,HY-2C,and HY-2D improved the inversion accuracy of gravity anomalies by 0.3 mGal compared to using HY-2A data alone.HY-2C and HY-2D contributed to enhancing the accuracy of the east component of vertical deflections.
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.
基金supported by Jiangsu Provincial Key Research and Development Program (No.BE20210132)the Zhejiang Provincial Key Research and Development Program (No.2021C01040)the team of S-SET
文摘Low-Earth-Orbit satellite constellation networks(LEO-SCN)can provide low-cost,largescale,flexible coverage wireless communication services.High dynamics and large topological sizes characterize LEO-SCN.Protocol development and application testing of LEO-SCN are challenging to carry out in a natural environment.Simulation platforms are a more effective means of technology demonstration.Currently available simulators have a single function and limited simulation scale.There needs to be a simulator for full-featured simulation.In this paper,we apply the parallel discrete-event simulation technique to the simulation of LEO-SCN to support large-scale complex system simulation at the packet level.To solve the problem that single-process programs cannot cope with complex simulations containing numerous entities,we propose a parallel mechanism and algorithms LP-NM and LP-YAWNS for synchronization.In the experiment,we use ns-3 to verify the acceleration ratio and efficiency of the above algorithms.The results show that our proposed mechanism can provide parallel simulation engine support for the LEO-SCN.
基金supported by the Feng Yun Application Pioneering Project (FY-APP-2022.0502)the National Natural Science Foundation of China (Grant No. 42205140)。
文摘Atmospheric ammonia(NH_(3)) is a chemically active trace gas that plays an important role in the atmospheric environment and climate change. Satellite remote sensing is a powerful technique to monitor NH_(3) concentration based on the absorption lines of NH_(3) in the thermal infrared region. In this study, we establish a retrieval algorithm to derive the NH_(3)column from the Hyperspectral Infrared Atmospheric Sounder(HIRAS) onboard the Chinese Feng Yun(FY)-3D satellite and present the first atmospheric NH_(3) column global map observed by the HIRAS instrument. The HIRAS observations can well capture NH_(3) hotspots around the world, e.g., India, West Africa, and East China, where large NH_(3) emissions exist. The HIRAS NH_(3) columns are also compared to the space-based Infrared Atmospheric Sounding Interferometer(IASI)measurements, and we find that the two instruments observe a consistent NH_(3) global distribution, with correlation coefficient(R) values of 0.28–0.73. Finally, some remaining issues about the HIRAS NH_(3) retrieval are discussed.
文摘Currently,China has 32 Earth observation satellites in orbit.The satellites can provide various data such as optical,multispectral,infrared,and radar.The spatial resolution of China Earth observation satellites ranges from low to medium to high.The satellites possess the capability to observe across multiple spectral bands,under all weather conditions,and at all times.The data of China Earth observation satellites has been widely used in fields such as natural resource detection,environmental monitoring and protection,disaster prevention and reduction,urban planning and mapping,agricultural and forestry surveys,land survey and geological prospecting,and ocean forecasting,achieving huge social benefits.This article introduces the recent progress of Earth observation satellites in China since 2022,especially the satellite operation,data archiving,data distribution and data coverage.
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.