The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology...The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.展开更多
In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage ...In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.展开更多
Satellite networks have high requirements for security and data processing speed.In order to improve the reliability of the network,software-defined network(SDN)technology is introduced and a central controller is set...Satellite networks have high requirements for security and data processing speed.In order to improve the reliability of the network,software-defined network(SDN)technology is introduced and a central controller is set in the network.Due to the characteristics of global perspective,control data separation,and centralized control of SDN,the idea of SDN is introduced to the design of the satellite network model.As a result,satellite nodes are only responsible for data transmission,while the maintenance of the links and the calculation of routes are implemented by the controller.For the massive LEO satellite network based on SDN,a state evaluation decision routing mechanism is proposed.The designed mechanism monitors the status of the entire network effectively and reduces the on-board load on the satellite network.The best routing decision is made under the comprehensive consideration of the current and historical status of each inter-satellite link between Low Earth Orbit(LEO)satellite network nodes.The calculation and storage requirements are controlled within a reasonable range.Based on the curve parameter transmission fuzzy encryption algorithm,a safe and reliable condition assessment decision routing mechanism(CADRM)is designed.It ensures that the personal information of the LEO satellite network can be transmitted safely and effectively.The experimental simulation results show the improvement of network throughput,the reduction of packet loss rate and the enhancing of network reliability.展开更多
A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative naviga...A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative navigation,which can improve the autonomy of the satellite cluster. The ISL topology design problem is formulated as a multi-objective optimization problem where the energy consumption and the navigation performance are considered. Further,the relative navigation is performed in a distributed fashion,where each satellite in the cluster makes observations and communicates with its neighbors via the ISL locally such that the transmission consumption and the computational complexity for the navigation are reduced. The ISL topology optimization problem is solved via the NSGA-Ⅱ algorithm,and the consensus Kalman filter is used for the distributed relative navigation. The proposed approach is flexible to varying tasks,with satellites joining or leaving the cluster anytime,and is robust to the failure of an individual satellite. Numerical simulations are presented to verify the feasibility of the proposed approach.展开更多
As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orb...As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.展开更多
To establish an efficient inter-satellite link (ISL) in an LEO network, the effect of geometric characteristics of ISL on the ISLs and the devices on the LEO satellite should be examined. Because of the continuous mov...To establish an efficient inter-satellite link (ISL) in an LEO network, the effect of geometric characteristics of ISL on the ISLs and the devices on the LEO satellite should be examined. Because of the continuous movement of the LEO satellite, the time-varying behaviours of the ISL's geometric charactersistics continuously change with the changes of the satellite's position on the orbit. These dynamic geometric characteristics of the ISLs are important for ISL's performance analyzing and the design of the devices on the LEO satellite. This paper describes dynamic geometric characteristics of ISL, analyzes the impact of these regulations on the tracking system of the satellite's antenna and the power adjusting system of the satellite's transmitter, with the Iridium system as an example.展开更多
The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,te...The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,temporary failures and failures of some TT&C resources,and so on.To improve the adaptability and robustness of satellite TT&C systems when faced with uncertain dynamic disturbances,a hierarchical disturbance propagation mechanism and an improved contract network dynamic scheduling method for satellite TT&C resources were designed to address the dynamic scheduling problem of satellite TT&C resources.Firstly,the characteristics of the dynamic scheduling problem of satellite TT&C resources are analyzed,and a mathematical model is established with the weighted optimization objectives of maximizing the revenue from task completion and minimizing the degree of plan disturbance.Then,a bottom-up distributed dynamic collaborative scheduling framework for satellite TT&C resources is proposed,which includes a task layer,a resource layer,a central internal collaboration layer,and a central external collaboration layer.Dynamic disturbances are propagated layer by layer from the task layer to the central external collaboration layer in a bottom-up manner,using efficient heuristic strategies in the task layer and the resource layer,respectively.We use improved contract network algorithms in the center internal collaboration layer and the center external collaboration layer,the original scheduling plan is quickly adjusted to minimize the impact of disturbances while effectively completing dynamic task requirements.Finally,a large number of simulation experiments were carried out and compared with various comparative algorithms.The results show that the proposed algorithm can effectively improve the solution effect of satellite TT&C resource dynamic scheduling problems,and has good application prospects.展开更多
A medium earth orbit (MEO) tracking and data relay satellite system (TDRSS) constellation scheme for China is proposed. This system consists of MEO satellite constellation, inter-satellite links (ISLs) and terre...A medium earth orbit (MEO) tracking and data relay satellite system (TDRSS) constellation scheme for China is proposed. This system consists of MEO satellite constellation, inter-satellite links (ISLs) and terrestrial gateway station, which can provide continuous bidirectional data transmission links between low altitude spacecrafls and the terrestrial gateway station in China. Theoretical analysis and simulation results indicate that the proposed constellation can cover the global low altitude space sphere and earth surface of China continuously, and has a preferable practical perspective.展开更多
A hybrid switching node structure with light and microwave links is proposed, which is applicable to the future data relay satellite systems, aiming at the development trend of coexistence of light- link and microwave...A hybrid switching node structure with light and microwave links is proposed, which is applicable to the future data relay satellite systems, aiming at the development trend of coexistence of light- link and microwave-link in the future. An experimental system for the light and microwave hybrid switching node based on wavelength selective optical switches (WSS) and optical transceiver modules, is established. It is shown by our experiment that this hybrid switching node can realize the dynamic bandwidth allocation and wavelength routing while the bit error rate of light link is less than 10?12, which provides a method for solving the hybrid switching problem of light-link and microwave-link on the future data relay satellite systems.展开更多
A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the ...A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.展开更多
Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging re...Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.展开更多
Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be...Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.展开更多
The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic d...The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic distribution characteristic of MEO-TDRSS, the coverage performance and inter-satellite link properties of four different constellation schemes are compared by simulations. Simulation results indicate that the rosette and common-track constellations, whose satellites are distributed on the celestial sphere more uniformly, are appropriate for the implementation of MEO-TDRSS of China.展开更多
Link disruption has a considerable impact on routing in multilayered satellite networks, which includes predictable disruption from the periodic satellite motion and unpredictable disruption from communication faults....Link disruption has a considerable impact on routing in multilayered satellite networks, which includes predictable disruption from the periodic satellite motion and unpredictable disruption from communication faults. Based on the analysis on the predictability of satellite links, a link disruption routing strategy is proposed for multilayered satellite networks, where, a topology period is divided into non-uniform slots, and a routing table in each slot is calculated by the topology predictability of satellite networks, and a congestion control mechanism is proposed to ensure the reliable transmission of packets, and a flooding mechanism is given to deal with the routes selection in the case of unpredictable link disruption. This routing strategy is implemented on the satellite network simulation platform, the simulation results show that the strategy has less delay and higher link utilization, and can meet the routing requirements of multilayered satellite networks.展开更多
Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic ...Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.展开更多
In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail...In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail, they can not be repaired in a short time. In order to increase the robustness for LEO/MEO satel- lite networks, an effective dynamic routing algorithm is proposed. All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG) with the node as the destination. In this algorithm, multiple routes are provided, loop-free is guaranteed, and as long as the DOADG maintains, it is not necessary to reroute even if some ISLs fail. Simulation results show that comparing to the conventional routing algorithms, it is more efficient and reliable, costs less transmission overhead and converges faster.展开更多
In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to t...In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.展开更多
The divergence angle of laser beam used in space laser communication is usually no more than 100μrad.Using laser beam with small divergence angle to achieve acquisition and tracking for space laser link has always be...The divergence angle of laser beam used in space laser communication is usually no more than 100μrad.Using laser beam with small divergence angle to achieve acquisition and tracking for space laser link has always been a difficult problem.In addition,the random nature of the atmosphere will affect the satellite-ground laser link,which increases the difficulty of the acquisition and stable tracking for the laser link.Thus,taking into account the above challenges for satellite-ground laser communication,an acquisition and tracking scheme of using both beacon beam and signal beam was designed for the Laser Communication Terminal(LCT)of Shijian 20 satellite.In-orbit test results indicated that under the condition of moderate atmospheric turbulence(atmospheric coherence length r0≈3 cm),the process of acquisition and tracking for the satellite-ground laser link can be completed within 1 s after the initial pointing between the LCT and Optical Ground Station(OGS)is performed,and the tracking error was less than 1μrad(3σ).In addition,the laser link can be re-established quickly once being interrupted by unsteady atmospheric turbulence,and can be maintained for a long time under moderate twurbulence conditions,which lays a foundation for future application of satellite-ground laser communication.展开更多
基金supported by the Stable-Support Scientific Project of the China Research Institute of Radio-wave Propagation(Grant No.A13XXXXWXX)the National Natural Science Foundation of China(Grant Nos.42174210,4207202,and 42188101)the Strategic Pioneer Program on Space Science,Chinese Academy of Sciences(Grant No.XDA15014800)。
文摘The Solar wind Magnetosphere Ionosphere Link Explorer(SMILE)satellite is a small magnetosphere–ionosphere link explorer developed cooperatively between China and Europe.It pioneers the use of X-ray imaging technology to perform large-scale imaging of the Earth’s magnetosheath and polar cusp regions.It uses a high-precision ultraviolet imager to image the overall configuration of the aurora and monitor changes in the source of solar wind in real time,using in situ detection instruments to improve human understanding of the relationship between solar activity and changes in the Earth’s magnetic field.The SMILE satellite is scheduled to launch in 2025.The European Incoherent Scatter Sciences Association(EISCAT)-3D radar is a new generation of European incoherent scatter radar constructed by EISCAT and is the most advanced ground-based ionospheric experimental device in the high-latitude polar region.It has multibeam and multidirectional quasi-real-time three-dimensional(3D)imaging capabilities,continuous monitoring and operation capabilities,and multiple-baseline interferometry capabilities.Joint detection by the SMILE satellite and the EISCAT-3D radar is of great significance for revealing the coupling process of the solar wind–magnetosphere–ionosphere.Therefore,we performed an analysis of the joint detection capability of the SMILE satellite and EISCAT-3D,analyzed the period during which the two can perform joint detection,and defined the key scientific problems that can be solved by joint detection.In addition,we developed Web-based software to search for and visualize the joint detection period of the SMILE satellite and EISCAT-3D radar,which lays the foundation for subsequent joint detection experiments and scientific research.
基金supported by National Natural Science Foundation of China (No. 62201593, 62471480, and 62171466)。
文摘In this paper, we investigate a cooperation mechanism for satellite-terrestrial integrated networks. The terrestrial relays act as the supplement of traditional small cells and cooperatively provide seamless coverage for users in the densely populated areas.To deal with the dynamic satellite backhaul links and backhaul capacity caused by the satellite mobility, severe co-channel interference in both satellite backhaul links and user links introduced by spectrum sharing,and the difference demands of users as well as heterogeneous characteristics of terrestrial backhaul and satellite backhaul, we propose a joint user association and satellite selection scheme to maximize the total sum rate. The optimization problem is formulated via jointly considering the influence of dynamic backhaul links, individual requirements and targeted interference management strategies, which is decomposed into two subproblems: user association and satellite selection. The user association is formulated as a nonconvex optimization problem, and solved through a low-complexity heuristic scheme to find the most suitable access point serving each user. Then, the satellite selection is resolved based on the cooperation among terrestrial relays to maximize the total backhaul capacity with the minimum date rate constraints. Finally,simulation results show the effectiveness of the proposed scheme in terms of total sum rate and power efficiency of TRs' backhaul.
基金This work is supported by Fundamental Research Funds for the Central Universities of China(328201911),C.G.(Chao Guo)the Open Project Program of National Engineering Laboratory for Agri-product Quality Traceability,C.G.(Chao Guo),Beijing Technology and Business University(BTBU)No.AQT-2018Y-B4,C.G.(Chao Guo)Higher Education Department of the Ministry of Education Industry-university Cooperative Education Project,C.G.(Chao Guo),and Education and Teaching Reform Project of Beijing Electronic and Technology Institute,C.G.(Chao Guo).
文摘Satellite networks have high requirements for security and data processing speed.In order to improve the reliability of the network,software-defined network(SDN)technology is introduced and a central controller is set in the network.Due to the characteristics of global perspective,control data separation,and centralized control of SDN,the idea of SDN is introduced to the design of the satellite network model.As a result,satellite nodes are only responsible for data transmission,while the maintenance of the links and the calculation of routes are implemented by the controller.For the massive LEO satellite network based on SDN,a state evaluation decision routing mechanism is proposed.The designed mechanism monitors the status of the entire network effectively and reduces the on-board load on the satellite network.The best routing decision is made under the comprehensive consideration of the current and historical status of each inter-satellite link between Low Earth Orbit(LEO)satellite network nodes.The calculation and storage requirements are controlled within a reasonable range.Based on the curve parameter transmission fuzzy encryption algorithm,a safe and reliable condition assessment decision routing mechanism(CADRM)is designed.It ensures that the personal information of the LEO satellite network can be transmitted safely and effectively.The experimental simulation results show the improvement of network throughput,the reduction of packet loss rate and the enhancing of network reliability.
基金supported by the National Natural Science Foundation of China(No.61801213)。
文摘A distributed relative navigation approach via inter-satellite sensing and communication for satellite clusters is proposed. The inter-satellite link(ISL)is used for ranging and exchanging data for the relative navigation,which can improve the autonomy of the satellite cluster. The ISL topology design problem is formulated as a multi-objective optimization problem where the energy consumption and the navigation performance are considered. Further,the relative navigation is performed in a distributed fashion,where each satellite in the cluster makes observations and communicates with its neighbors via the ISL locally such that the transmission consumption and the computational complexity for the navigation are reduced. The ISL topology optimization problem is solved via the NSGA-Ⅱ algorithm,and the consensus Kalman filter is used for the distributed relative navigation. The proposed approach is flexible to varying tasks,with satellites joining or leaving the cluster anytime,and is robust to the failure of an individual satellite. Numerical simulations are presented to verify the feasibility of the proposed approach.
基金National Natural Science Foundation of China(60532030)
文摘As an important scheme of future global mobile satellite communication systems to provide multimedia service, a Double-Layer Satellite Network (DLSN) with MEO satellites and LEO satellites is proposed. The Inter-Orbit-Links (IOLs) between layers is an essential factor, which affects the performances of the DLSN systems. Considering certain constellation parameters, the geometric characteristics of IOLs are described and the connectivity of MEO satellites and LEO satellites in the DLSN is analyzed. By computer simulation, the results show that IOLs should be selectively established according to certain parameters rather than the simple in-sight principle.
文摘To establish an efficient inter-satellite link (ISL) in an LEO network, the effect of geometric characteristics of ISL on the ISLs and the devices on the LEO satellite should be examined. Because of the continuous movement of the LEO satellite, the time-varying behaviours of the ISL's geometric charactersistics continuously change with the changes of the satellite's position on the orbit. These dynamic geometric characteristics of the ISLs are important for ISL's performance analyzing and the design of the devices on the LEO satellite. This paper describes dynamic geometric characteristics of ISL, analyzes the impact of these regulations on the tracking system of the satellite's antenna and the power adjusting system of the satellite's transmitter, with the Iridium system as an example.
基金This work was supported in part by the National Natural Science Foundation of China(No.62373380).
文摘The practical engineering of satellite tracking telemetry and command(TT&C)is often disturbed by unpredictable external factors,including the temporary rise in a significant quantity of satellite TT&C tasks,temporary failures and failures of some TT&C resources,and so on.To improve the adaptability and robustness of satellite TT&C systems when faced with uncertain dynamic disturbances,a hierarchical disturbance propagation mechanism and an improved contract network dynamic scheduling method for satellite TT&C resources were designed to address the dynamic scheduling problem of satellite TT&C resources.Firstly,the characteristics of the dynamic scheduling problem of satellite TT&C resources are analyzed,and a mathematical model is established with the weighted optimization objectives of maximizing the revenue from task completion and minimizing the degree of plan disturbance.Then,a bottom-up distributed dynamic collaborative scheduling framework for satellite TT&C resources is proposed,which includes a task layer,a resource layer,a central internal collaboration layer,and a central external collaboration layer.Dynamic disturbances are propagated layer by layer from the task layer to the central external collaboration layer in a bottom-up manner,using efficient heuristic strategies in the task layer and the resource layer,respectively.We use improved contract network algorithms in the center internal collaboration layer and the center external collaboration layer,the original scheduling plan is quickly adjusted to minimize the impact of disturbances while effectively completing dynamic task requirements.Finally,a large number of simulation experiments were carried out and compared with various comparative algorithms.The results show that the proposed algorithm can effectively improve the solution effect of satellite TT&C resource dynamic scheduling problems,and has good application prospects.
基金National Natural Science Foundation of China (No. 60372013)
文摘A medium earth orbit (MEO) tracking and data relay satellite system (TDRSS) constellation scheme for China is proposed. This system consists of MEO satellite constellation, inter-satellite links (ISLs) and terrestrial gateway station, which can provide continuous bidirectional data transmission links between low altitude spacecrafls and the terrestrial gateway station in China. Theoretical analysis and simulation results indicate that the proposed constellation can cover the global low altitude space sphere and earth surface of China continuously, and has a preferable practical perspective.
文摘A hybrid switching node structure with light and microwave links is proposed, which is applicable to the future data relay satellite systems, aiming at the development trend of coexistence of light- link and microwave-link in the future. An experimental system for the light and microwave hybrid switching node based on wavelength selective optical switches (WSS) and optical transceiver modules, is established. It is shown by our experiment that this hybrid switching node can realize the dynamic bandwidth allocation and wavelength routing while the bit error rate of light link is less than 10?12, which provides a method for solving the hybrid switching problem of light-link and microwave-link on the future data relay satellite systems.
文摘A new handover strategy named minimal-hops handover(MHH) strategy for the lowearth orbit(LEO) satellite constellations networks equipped with inter-satellite links(ISLs) is proposed.MHH strategy,which is based on the hops of the end-to-end connection paths and makes good use of theregularity of the constellation network topology,can appropriately combine the handover procedure withrouting and efficiently solve the inter-satellite handover issue.Moreover,MHH strategy can providequality of services(QoS) guarantees to some extent.The system performances of the MHH strategy,suchas time propagation delay and handover frequency,are evaluated and compared with that of otherprevious strategies.The simulation results show that MHH strategy performs better than other previoushandover strategies.
基金Supported by the open project of Communication network transmission and distribution technologies Key Laboratory(ITD-12005/K1260011)the National Natural Science Foundation of China(61371126) and the National Natural Science Foundation of China(60903195)
文摘Satellite networks have many inherent advantages over terrestrial networks and have become an important part of the global network infrastructure.Routing aimed at satellite networks has become a hot and challenging research topic.Satellite networks,which are special kind of Delay Tolerant Networks(DTN),can also adopt the routing solutions of DTN.Among the many routing proposals,Contact Graph Routing(CGR) is an excellent candidate,since it is designed particularly for use in highly deterministic space networks.The applicability of CGR in satellite networks is evaluated by utilizing the space oriented DTN gateway model based on OPNET(Optimized Network Engineering Tool).Link failures are solved with neighbor discovery mechanism and route recomputation.Earth observation scenario is used in the simulations to investigate CGR's performance.The results show that the CGR performances are better in terms of effectively utilizing satellite networks resources to calculate continuous route path and alternative route can be successfully calculated under link failures by utilizing fault tolerance scheme.
基金supported by the National Natural Science Foundation of China(61773120)the National Natural Science Fund for Distinguished Young Scholars of China(61525304)+2 种基金the Foundation for the Author of National Excellent Doctoral Dissertation of China(2014-92)the Hunan Postgraduate Research Innovation Project(CX2018B022)the China Scholarship Council-Leiden University Scholarship。
文摘Inter-satellite link(ISL)scheduling is required by the BeiDou Navigation Satellite System(BDS)to guarantee the system ranging and communication performance.In the BDS,a great number of ISL scheduling instances must be addressed every day,which will certainly spend a lot of time via normal metaheuristics and hardly meet the quick-response requirements that often occur in real-world applications.To address the dual requirements of normal and quick-response ISL schedulings,a data-driven heuristic assisted memetic algorithm(DHMA)is proposed in this paper,which includes a high-performance memetic algorithm(MA)and a data-driven heuristic.In normal situations,the high-performance MA that hybridizes parallelism,competition,and evolution strategies is performed for high-quality ISL scheduling solutions over time.When in quick-response situations,the data-driven heuristic is performed to quickly schedule high-probability ISLs according to a prediction model,which is trained from the high-quality MA solutions.The main idea of the DHMA is to address normal and quick-response schedulings separately,while high-quality normal scheduling data are trained for quick-response use.In addition,this paper also presents an easy-to-understand ISL scheduling model and its NP-completeness.A seven-day experimental study with 10080 one-minute ISL scheduling instances shows the efficient performance of the DHMA in addressing the ISL scheduling in normal(in 84 hours)and quick-response(in 0.62 hour)situations,which can well meet the dual scheduling requirements in real-world BDS applications.
基金the National Natural Science Foundation of China (60372013)
文摘The satellite constellation classes, which are suitable for the medium earth orbit tracking and data relay satellite system (MEO-TDRSS) of China, are investigated. On the basis of the functionality and the traffic distribution characteristic of MEO-TDRSS, the coverage performance and inter-satellite link properties of four different constellation schemes are compared by simulations. Simulation results indicate that the rosette and common-track constellations, whose satellites are distributed on the celestial sphere more uniformly, are appropriate for the implementation of MEO-TDRSS of China.
文摘Link disruption has a considerable impact on routing in multilayered satellite networks, which includes predictable disruption from the periodic satellite motion and unpredictable disruption from communication faults. Based on the analysis on the predictability of satellite links, a link disruption routing strategy is proposed for multilayered satellite networks, where, a topology period is divided into non-uniform slots, and a routing table in each slot is calculated by the topology predictability of satellite networks, and a congestion control mechanism is proposed to ensure the reliable transmission of packets, and a flooding mechanism is given to deal with the routes selection in the case of unpredictable link disruption. This routing strategy is implemented on the satellite network simulation platform, the simulation results show that the strategy has less delay and higher link utilization, and can meet the routing requirements of multilayered satellite networks.
基金supported by the National Natural Science Foundation of China (Grant No.91338201)
文摘Satellite communication systems(SCS) operating on frequency bands above 10 GHz are sensitive to atmosphere physical phenomena, especially rain attenuation. To evaluate impairments in satellite performance, stochastic dynamic modeling(SDM) is considered as an effective way to predict real-time satellite channel fading caused by rain. This article carries out a survey of SDM using stochastic differential equations(SDEs) currently in the literature. Special attention is given to the different input characteristics of each model to satisfy specific local conditions. Future research directions in SDM are also suggested in this paper.
基金the National Natural Science Foundation of Tianjin(07JCYBTC14800)
文摘In low earth orbit(LEO) and medium earth orbit(MEO) satellite networks, the network topology changes rapidly because of the high relative speed movement of satellites. When some inter-satellite links (ISLs) fail, they can not be repaired in a short time. In order to increase the robustness for LEO/MEO satel- lite networks, an effective dynamic routing algorithm is proposed. All the routes to a certain node are found by constructing a destination oriented acyclic directed graph(DOADG) with the node as the destination. In this algorithm, multiple routes are provided, loop-free is guaranteed, and as long as the DOADG maintains, it is not necessary to reroute even if some ISLs fail. Simulation results show that comparing to the conventional routing algorithms, it is more efficient and reliable, costs less transmission overhead and converges faster.
基金Supported by the National High Technology Research and Development Program of China(2013AA1548)
文摘In view of the low ranging efficiency of the conventional fixed frame-length algorithm in the inter-satellite link,an adaptive frame-length algorithm is proposed. The frame length is adjusted adaptively according to the results of ranging and velocity measuring to improve ranging efficiency. Buffers which enable the frame length to be selected discretely and adaptively are introduced to avoid frequent hopping of the frame-length.Frame length marker is created to automatically identify the frame-length for frame synchronization procedures in receivers. The feasibility and the validity of the proposed algorithm to improve the efficiency of ranging are verified through both theoretic analysis and simulation,and the efficiency improves up to 88% when there are five buffers. This improvement can be further enhanced by increasing the number of buffers. Proper allocation of inter-satellite buffers is required to make a balance between the ranging efficiency and the system complexity.
文摘The divergence angle of laser beam used in space laser communication is usually no more than 100μrad.Using laser beam with small divergence angle to achieve acquisition and tracking for space laser link has always been a difficult problem.In addition,the random nature of the atmosphere will affect the satellite-ground laser link,which increases the difficulty of the acquisition and stable tracking for the laser link.Thus,taking into account the above challenges for satellite-ground laser communication,an acquisition and tracking scheme of using both beacon beam and signal beam was designed for the Laser Communication Terminal(LCT)of Shijian 20 satellite.In-orbit test results indicated that under the condition of moderate atmospheric turbulence(atmospheric coherence length r0≈3 cm),the process of acquisition and tracking for the satellite-ground laser link can be completed within 1 s after the initial pointing between the LCT and Optical Ground Station(OGS)is performed,and the tracking error was less than 1μrad(3σ).In addition,the laser link can be re-established quickly once being interrupted by unsteady atmospheric turbulence,and can be maintained for a long time under moderate twurbulence conditions,which lays a foundation for future application of satellite-ground laser communication.