The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information ...The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.展开更多
Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessent...Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.展开更多
Gully erosion can lead to the destruction of farmland and the reduction in crop yield.Gully mapping from remote sensing images is critical for quickly obtaining the distribution of gullies at regional scales and arran...Gully erosion can lead to the destruction of farmland and the reduction in crop yield.Gully mapping from remote sensing images is critical for quickly obtaining the distribution of gullies at regional scales and arranging corresponding prevention and control measures.The narrow and irregular shapes and similar colors to the surrounding farmland make mapping erosion gullies in sloping farmland from remote sensing images challenging.To implement gully erosion mapping,we developed a small training samples-oriented lightweight deep leaning model,called asymmetric non-local LinkNet(ASNL-LinkNet).The ASNL-LinkNet integrates global context information through an asymmetric non-local operation and conducts multilayer feature fusion to improve the robustness of the extracted features.Experiment results show that the proposed ASNL-LinkNet achieves the best performance when compared with other deep learning methods.The quantitative evaluation results in the three test areas show that the F1-score of erosion gully recognition varies from 0.62 to 0.72.This study provides theoretical reference and practical guidance for monitoring erosion gullies on slope farmland in the black soil region of Northeast China.展开更多
Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized...Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast.展开更多
Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h ...Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation.展开更多
Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- te...Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- ternal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some prop- agate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekon~ River.展开更多
Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in develope...Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.展开更多
As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The ...As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The handhold GPS machines were used to measure the geographical position and some other information of these samples such as area shape. The GPS data and the interpretation marks were used to correct H J-1 image, assist human-computer interactive interpretation, and other operations. The test data had been participated in the whole classification process. The accuracy of interpreted information on rice planting area was more than 90% By using the leaf area index from the normalized difference vegetation index inversion, the biomass from the ratio vegetation index inversion, and combined with the rice yield estimation model, the rice yield was estimated. Further, the thematic map of rice production classification was made based on the rice yield data. According to the comparison results between measured and fitted values of yields and areas of sampling sites, the accuracy of the yield estimation was more than 85%. The results suggest that HJ-A/B images could basically meet the demand of rice growth monitoring and yield forecasting, and could be widely applied to rice production monitoring.展开更多
This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV)and the nonlinear Schr?dinger(NLS)equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs)from satelli...This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV)and the nonlinear Schr?dinger(NLS)equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs)from satellite images.Visible band images taken by five satellite sensors with spatial resolutions from 5 m to 250 m near the Dongsha Atoll of the northern South China Sea(NSCS)are used as a baseline.From the baseline,the amplitudes of ISWs occurring from July 10 to 13,2017 are estimated by the two approaches and compared with concurrent mooring observations for assessments.Using the ratio of the dimensionless dispersive parameter to the square of dimensionless nonlinear parameter as a criterion,the best appliable ranges of the two approaches are clearly separated.The statistics of total 18 cases indicate that in each 50%of cases,the KdV and the NLS approaches give more accurate estimates of ISW amplitudes.It is found that the relative errors of ISW amplitudes derived from two theoretical approaches are closely associated with the logarithmic bottom slopes.This may be attributed to the nonlinear growth of ISW amplitudes as propagating along a shoaling thermocline or topography.The test results using three consecutive satellite images to retrieve the ISW propagation speeds indicate that the use of multiple satellite images(>2)may improve the accuracy of retrieved phase speeds.Meanwhile,repeated multi-satellite images of ISWs can help to determine the types of ISWs if mooring data are available nearby.展开更多
This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equatio...This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.展开更多
Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast ons...Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast onset,and long incubation time.Most importantly,in China,the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%,and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.展开更多
The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree ...The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.展开更多
Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechani...Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechanism. However, there is little information or field data on carbon emissions from forest degradation caused by logging. To help fill this gap, Landsat 7 and 8 and SPOT 4 images of the East Region of Cameroon were processed and combined with field measurements (measurement of forest roads widths, felling gaps and log yards) to assess all disturbed areas. Also, measurements of different types of forest infrastructures helped to highlight emission factors. Forest contributes to 5.18 % of the degradation of the annual allowable cut (AAC) (84.53 ha) corresponding to 4.09 % of forest carbon stock (6.92 t ha^-1). Felling gaps constitute the primary source of degradation, represented an estimated area of 32.41 ha (2 % of the cutting area) far ahead of primary roads (18.44ha) and skid trails (16.36 ha). Assessment of the impact of degradation under the canopy requires the use of high resolution satellite images and field surveys.展开更多
The structural diversity in urban forests is highly important to protect biodiversity. In particular, fruit trees and bush species, cavity-bearing trees and coarse, woody debris provide habitats for animals to feed, n...The structural diversity in urban forests is highly important to protect biodiversity. In particular, fruit trees and bush species, cavity-bearing trees and coarse, woody debris provide habitats for animals to feed, nest and hide. Improper silvicultural practices, intensive recreational use and illegal harvesting lead to a decline in the structural diversity in forests within larger metropolitan cities. It is important to monitor the structural diversity at definite time intervals using effective technologies with a view to instituting the necessary conservation measures. The use of satellite images seems to be appropriate to this end. Here we aimed to identify the associations between the textural features derived from the satellite images with different spatial resolutions and the structural diversity indices in urban forest stands (Shannon-Wiener index, complexity index, dominance index and density of wildlife trees). RapidEye images with a spatial resolution of 5 m × 5 m, ASTER images with a spatial resolution of 15 m × 15 m and Landsat-8 ETM satellite images with a spatial resolution of 30 m × 30 m were used in this study. The first-order (standard deviation of gray levels) and second order (GLCM entropy, GLCM contrast and GLCM correlation) textural features were calculated from the satellite images. When associations between textural features in the images and the structural diversity indices were assessed using the Pearson correlation coefficient, very high associations were found between the image textural features and the diversity indices. The highest association was found between the standard deviation of gray levels (SDGL<sub>RAP</sub>) derived from RVI<sub>RAP</sub> of RapidEye image and the Shannon-Wiener index (H <sub>h</sub>) calculated on the basis of tree height (R <sup>2</sup> = 0.64). The findings revealed that RapidEye satellite images with a spatial resolution of 5 m × 5 m are most suitable for estimating the structural diversity in urban forests.展开更多
An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the au...An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the austral summers 1997~1998 and 1999~2000,with the current coastline from a SPOT satellite image mosaic,topographic information from existing maps and from the Antarctic Digital Database.From this data sets,a digital terrain model (DTM) was generated using Arc/Info GIS.In a second step,a satellite image map at the scale 1∶100 000 was assembled from contour lines derived from the DTM and the satellite mosaic.A lack of accurate topographic information in the eastern part of the island was identified.Additional topographic surveying or SAR interferometry should be used to improve the data quality in that area.The GIS integrated database will be indispensable for glaciological and climatological studies and administrative and scientific purposes.In future,the application of GIS techniques will be mandatory for environmental impact studies and environmental monitoring as well as for management plans on King George Island.展开更多
Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution r...Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education.展开更多
This paper proposes a comprehensive framework for estimating the regional rooftop photovoltaic(PV)potential.The required rooftop information is extracted from Gao Fen-7 satellite images.In particular,the rooftop area ...This paper proposes a comprehensive framework for estimating the regional rooftop photovoltaic(PV)potential.The required rooftop information is extracted from Gao Fen-7 satellite images.In particular,the rooftop area is obtained using a semantic segmentation network.The azimuth and inclination angles are calculated based on the digital surface model.In addition,to improve the accuracy of the economic evaluation,buildings are divided into commercial and industrial buildings and residential buildings.Based on the difference in the roof inclination,the rooftops can be divided into flat roofs,on which the PV panels are installed with the optimal inclination angle,and sloped rooftops,on which the PV panels are installed in a lay-flat manner.The solar irradiation on the plane-of-array is calculated using the isotropic sky translocation model.Then,the available installed capacity and generation potential of the rooftop PV is obtained.Finally,the net present value,dynamic payback period,and internal rate of return are used to evaluate the economic efficiency of the rooftop PV project.The proposed framework is applied in the Da Xing district of Beijing,China,with a total area of 546.84 km^(2).The results show that the rooftop area and available installed capacity of PV are 25.63 km^(2)and 1487.45 MWp,respectively.The annual rooftop PV generation potential is 2832.23 GWh,with significant economic returns.展开更多
The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disast...The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).展开更多
Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand ho...Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.展开更多
The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse th...The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.展开更多
文摘The isotherm is an important feature of infrared satellite cloud images (ISCI), which can directly reveal substantial information of cloud systems. The isotherm extraction of ISCI can remove the redundant information and therefore helps to compress the information of ISCI. In this paper, an isotherm extraction method is presented. The main aggregate of clouds can be segmented based on mathematical morphology. T algorithm and IP algorithm are then applied to extract the isotherms from the main aggregate of clouds. A concrete example for the extraction of isotherm based on IBM SP2 is described. The result shows that this is a high efficient algorithm. It can be used in feature extractions of infrared images for weather forecasts.
文摘Industrial activities, through the human-induced release of Green House Gas (GHG) emissions, have beenidentified as the primary cause of global warming. Accurate and quantitative monitoring of these emissions isessential for a comprehensive understanding of their impact on the Earth’s climate and for effectively enforcingemission regulations at a large scale. This work examines the feasibility of detecting and quantifying industrialsmoke plumes using freely accessible geo-satellite imagery. The existing systemhas so many lagging factors such aslimitations in accuracy, robustness, and efficiency and these factors hinder the effectiveness in supporting timelyresponse to industrial fires. In this work, the utilization of grayscale images is done instead of traditional colorimages for smoke plume detection. The dataset was trained through a ResNet-50 model for classification and aU-Net model for segmentation. The dataset consists of images gathered by European Space Agency’s Sentinel-2 satellite constellation from a selection of industrial sites. The acquired images predominantly capture scenesof industrial locations, some of which exhibit active smoke plume emissions. The performance of the abovementionedtechniques and models is represented by their accuracy and IOU (Intersection-over-Union) metric.The images are first trained on the basic RGB images where their respective classification using the ResNet-50model results in an accuracy of 94.4% and segmentation using the U-Net Model with an IOU metric of 0.5 andaccuracy of 94% which leads to the detection of exact patches where the smoke plume has occurred. This work hastrained the classification model on grayscale images achieving a good increase in accuracy of 96.4%.
基金supported by the National Natural Science Foundation of China(42201419).
文摘Gully erosion can lead to the destruction of farmland and the reduction in crop yield.Gully mapping from remote sensing images is critical for quickly obtaining the distribution of gullies at regional scales and arranging corresponding prevention and control measures.The narrow and irregular shapes and similar colors to the surrounding farmland make mapping erosion gullies in sloping farmland from remote sensing images challenging.To implement gully erosion mapping,we developed a small training samples-oriented lightweight deep leaning model,called asymmetric non-local LinkNet(ASNL-LinkNet).The ASNL-LinkNet integrates global context information through an asymmetric non-local operation and conducts multilayer feature fusion to improve the robustness of the extracted features.Experiment results show that the proposed ASNL-LinkNet achieves the best performance when compared with other deep learning methods.The quantitative evaluation results in the three test areas show that the F1-score of erosion gully recognition varies from 0.62 to 0.72.This study provides theoretical reference and practical guidance for monitoring erosion gullies on slope farmland in the black soil region of Northeast China.
文摘Using the method of mathematical morphology,this paper fulfills filtration,segmentation and extraction of morphological features of the satellite cloud image.It also gives out the relative algorithms,which is realized by parallel C programming based on Transputer networks.It has been successfully used to process the typhoon and the low tornado cloud image.And it will be used in weather forecast.
文摘Based on the data of satellite cloud image and Doppler radar,the rainstorm process from July 31st,2007 to August 1st,2007 in Liaoning was analyzed.The precipitation in Fushun and Haicheng was more than 100 mm,and 6 h precipitation in Fushun and Dandong was more than 50 mm.Through the analysis of strong precipitation period,the structure of clouds had a little decline from the stage of development to maturity.The gray value and gradient degree around were both larger in the center of heavy precipitation.
基金The Chinese Offshore Investigation and Assessment under contract No.908-01-BC04the European Space Agency and the Ministry of Science and Technology of the People’s Republic of China Dragon 2 Cooperation Programme under contract No.5316the scientific research fund of the Second Institute of Oceanography,State Oceanic Administration under contract No.JG1206
文摘Internal wave propagation carries considerable vertical shear which can lead to turbulence and mixing. Based on the analysis of more than 2 500 synthetic aperture radar (SAR) and optical satellite images, the in- ternal wave propagation in the whole South China Sea was investigated systematically. The results show that (1) in the northeastern South China Sea, most internal waves propagate westward from the Luzon Strait and are diffracted by coral reefs near the Dongsha Islands. Some impinge onto the shelf and a few are reflected; (2) in the northwestern South China Sea, most internal waves are generated at the shelf and propagate northwestward or westward to the coast; (3) in the western South China Sea, most internal waves propagate westward to the Vietnamese coast, except a few propagate southward to the deep sea; and (4) in the southern South China Sea, most internal waves propagate southwestward to the coast. Some prop- agate southeastward to the coast of Kalimantan Island, and a few propagate southeastward because of the influence of the Mekon~ River.
基金supported by the National Natural Science Foundation of China (NSFC) (No.30571112).
文摘Due to inappropriate planning and management, accelerated urban growth and tremendous loss in land, especially cropland, have become a great challenge for sustainable urban development in China, especially in developed urban area in the coastal regions; therefore, there is an urgent need to effectively detect and monitor the land use changes and provide accurate and timely information for planning and management. In this study a method combining principal component analysis (PCA) of multisensor satellite images from SPOT (systeme pour l'observation de la terre or earth observation satellite)-5 multispectral (XS) and Landsat-7 enhanced thematic mapper (ETM) panchromatic (PAN) data, and supervised classification was used to detect and analyze the dynamics of land use changes in the city proper of Hangzhou. The overall accuracy of the land use change detection was 90.67% and Kappa index was 0.89. The results indicated that there was a considerable land use change (10.03% of the total area) in the study area from 2001 to 2003, with three major types of land use conversions: from cropland into built-up land, construction site, and water area (fish pond). Changes from orchard land into built-up land were also detected. The method described in this study is feasible and useful for detecting rapid land use change in the urban area.
文摘As illustrated by the case of Xuyi County, Jinhu County and Hongze County in Jiangsu Province, China, monitoring and forecasting of rice production were carried out by using HJ-1A satellite remote sensing images. The handhold GPS machines were used to measure the geographical position and some other information of these samples such as area shape. The GPS data and the interpretation marks were used to correct H J-1 image, assist human-computer interactive interpretation, and other operations. The test data had been participated in the whole classification process. The accuracy of interpreted information on rice planting area was more than 90% By using the leaf area index from the normalized difference vegetation index inversion, the biomass from the ratio vegetation index inversion, and combined with the rice yield estimation model, the rice yield was estimated. Further, the thematic map of rice production classification was made based on the rice yield data. According to the comparison results between measured and fitted values of yields and areas of sampling sites, the accuracy of the yield estimation was more than 85%. The results suggest that HJ-A/B images could basically meet the demand of rice growth monitoring and yield forecasting, and could be widely applied to rice production monitoring.
基金The National Key Project of Research and Development Plan of China under contract No.2016YFC1401905the National Natural Science Foundation of China under contract No.41976163+1 种基金the Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory(Guangzhou)under contract No.GML2019ZD0602the Guangdong Special Fund Program for Marine Economy Development under contract No.GDNRC[2020]050。
文摘This study assesses the accuracy and the applicability of the Korteweg-de Vries(KdV)and the nonlinear Schr?dinger(NLS)equation solutions to derivation of dynamic parameters of internal solitary waves(ISWs)from satellite images.Visible band images taken by five satellite sensors with spatial resolutions from 5 m to 250 m near the Dongsha Atoll of the northern South China Sea(NSCS)are used as a baseline.From the baseline,the amplitudes of ISWs occurring from July 10 to 13,2017 are estimated by the two approaches and compared with concurrent mooring observations for assessments.Using the ratio of the dimensionless dispersive parameter to the square of dimensionless nonlinear parameter as a criterion,the best appliable ranges of the two approaches are clearly separated.The statistics of total 18 cases indicate that in each 50%of cases,the KdV and the NLS approaches give more accurate estimates of ISW amplitudes.It is found that the relative errors of ISW amplitudes derived from two theoretical approaches are closely associated with the logarithmic bottom slopes.This may be attributed to the nonlinear growth of ISW amplitudes as propagating along a shoaling thermocline or topography.The test results using three consecutive satellite images to retrieve the ISW propagation speeds indicate that the use of multiple satellite images(>2)may improve the accuracy of retrieved phase speeds.Meanwhile,repeated multi-satellite images of ISWs can help to determine the types of ISWs if mooring data are available nearby.
基金supported by Academician Foundation of China (for Yuan and Zheng)Shanghai Science and Technology Committee Program - Special for EXPO under Grant No.10DZ0581600 and Grant SHUES2011A07 from Shanghai Institute of Urban Ecology and Sustainability(for Zhao)+1 种基金partially supported by US National Sci-ence Foundation Award 0962107 (for Zheng and Liu)Award 1061998 (for Zheng)
文摘This study aims to figure out satellite imaging mechanisms for submerged sand ridges in the shallow water region in the case of the flow parallel to the topography corrugation.Solving the disturbance governing equations of the shear-flow yields the analytical solutions of the secondary circulation.The solutions indicate that a flow with a parabolic horizontal velocity shear and a sinusoidal vertical velocity shear will induce a pair of vortexes with opposite signs distributed symmetrically on the two sides of central line of a rectangular canal.In the case of the presence of surface Ekman layer with the direction of Ekman current opposite to(coincident with) the mean flow,the two vortexes converge(diverge) at the central line of canal in the upper layer and form a surface current convergent(divergent) zone along the central line of the canal.In the case of the absence of surface Ekman layer,there is no convergent(divergent) zone formed over the sea surface.The theoretical results are applied to interpretations of three convergent cases,one divergent case and statistics of 27 cases of satellite observations in the submerged sand ridge region of the Liaodong Shoal in the Bohai Sea.We found that the long,finger-like,bright patterns on SAR images are corresponding to the locations of the canals(or tidal channels) formed by two adjacent sand ridges rather than the sand ridges themselves.
基金supported by the National Science and Technology Major Project of China’s High Resolution Earth Observation System(21-Y30B02-9001-19/22)the Heilongjiang Provincial Natural Science Foundation of China(YQ2020C018)。
文摘Pine wilt disease caused by the pinewood nematode Bursaphelenchus xylophilus has led to the death of a large number of pine trees in China.This destructive disease has the characteristics of bring wide-spread,fast onset,and long incubation time.Most importantly,in China,the fatality rate in pines is as high as 100%.The key to reducing this mortality is how to quickly find the infected trees.We proposed a method of automatically identifying infected trees by a convolution neural network and bounding box tool.This method rapidly locates the infected area by classifying and recognizing remote sensing images obtained by high resolution earth observation Satellite.The recognition accuracy of the test data set was 99.4%,and the remote sensing image combined with convolution neural network algorithm can identify and determine the distribution of the infected trees.It can provide strong technical support for the prevention and control of pine wilt disease.
基金This study was supported by the Project of“863”Marine Monitor of Hi-Tech Research and Development Program of China under contract No.2003AA604040.
文摘The fractal characteristics of tidal creeks in the Gaizhou Beach are analyzed based on high-resolution images fusionof Landsat TM and ERS2, and then the graphic models and characteristics of converse information tree of tidalcreeks in the Gaizhou Beach are established. A calculation model is established based on the above results, and at thesame time, quantitative calculation of the evolution characteristics and the diversity between the northern and thesouthern parts of the Gaizhou Beach is carried out. By the supervised classification of these images, distribution andareas of high tidal flats, middle tidal flats and low tidal flats in the Gaizhou Beach are studied quantitatively, and imagecharactistics of seashell habitats in the Gaizhou Beach and the correlation between mudflat distribution and seashellhabitats are studied. At last, the engineering problems in the Gaizhou Beach are discussed.
基金financially supported by FORAFAMA and COBAM project
文摘Forest logging in the Congo Basin has led to forest fragmentation due to logging infrastructures and felling gaps. In the same vein, forest concessions in the Congo Basin have increasing interest in the REDD+ mechanism. However, there is little information or field data on carbon emissions from forest degradation caused by logging. To help fill this gap, Landsat 7 and 8 and SPOT 4 images of the East Region of Cameroon were processed and combined with field measurements (measurement of forest roads widths, felling gaps and log yards) to assess all disturbed areas. Also, measurements of different types of forest infrastructures helped to highlight emission factors. Forest contributes to 5.18 % of the degradation of the annual allowable cut (AAC) (84.53 ha) corresponding to 4.09 % of forest carbon stock (6.92 t ha^-1). Felling gaps constitute the primary source of degradation, represented an estimated area of 32.41 ha (2 % of the cutting area) far ahead of primary roads (18.44ha) and skid trails (16.36 ha). Assessment of the impact of degradation under the canopy requires the use of high resolution satellite images and field surveys.
基金supported by the Scientific and Technological Research Council of Turkey(TBTAK)under the project no.114O015
文摘The structural diversity in urban forests is highly important to protect biodiversity. In particular, fruit trees and bush species, cavity-bearing trees and coarse, woody debris provide habitats for animals to feed, nest and hide. Improper silvicultural practices, intensive recreational use and illegal harvesting lead to a decline in the structural diversity in forests within larger metropolitan cities. It is important to monitor the structural diversity at definite time intervals using effective technologies with a view to instituting the necessary conservation measures. The use of satellite images seems to be appropriate to this end. Here we aimed to identify the associations between the textural features derived from the satellite images with different spatial resolutions and the structural diversity indices in urban forest stands (Shannon-Wiener index, complexity index, dominance index and density of wildlife trees). RapidEye images with a spatial resolution of 5 m × 5 m, ASTER images with a spatial resolution of 15 m × 15 m and Landsat-8 ETM satellite images with a spatial resolution of 30 m × 30 m were used in this study. The first-order (standard deviation of gray levels) and second order (GLCM entropy, GLCM contrast and GLCM correlation) textural features were calculated from the satellite images. When associations between textural features in the images and the structural diversity indices were assessed using the Pearson correlation coefficient, very high associations were found between the image textural features and the diversity indices. The highest association was found between the standard deviation of gray levels (SDGL<sub>RAP</sub>) derived from RVI<sub>RAP</sub> of RapidEye image and the Shannon-Wiener index (H <sub>h</sub>) calculated on the basis of tree height (R <sup>2</sup> = 0.64). The findings revealed that RapidEye satellite images with a spatial resolution of 5 m × 5 m are most suitable for estimating the structural diversity in urban forests.
文摘An improved topographic database for King George Island,one of the most frequently visited regions in Antarctica,is presented.A first step consisted in combining data from differential GPS surveys gained during the austral summers 1997~1998 and 1999~2000,with the current coastline from a SPOT satellite image mosaic,topographic information from existing maps and from the Antarctic Digital Database.From this data sets,a digital terrain model (DTM) was generated using Arc/Info GIS.In a second step,a satellite image map at the scale 1∶100 000 was assembled from contour lines derived from the DTM and the satellite mosaic.A lack of accurate topographic information in the eastern part of the island was identified.Additional topographic surveying or SAR interferometry should be used to improve the data quality in that area.The GIS integrated database will be indispensable for glaciological and climatological studies and administrative and scientific purposes.In future,the application of GIS techniques will be mandatory for environmental impact studies and environmental monitoring as well as for management plans on King George Island.
基金supported by the National Natural Science Foundation of China(31670552)the PAPD(Priority Academic Program Development)of Jiangsu provincial universities and the China Postdoctoral Science Foundation funded projectthis work was performed while the corresponding author acted as an awardee of the 2017 Qinglan Project sponsored by Jiangsu Province。
文摘Accurate information on the location and magnitude of vegetation change in scenic areas can guide the configuration of tourism facilities and the formulation of vegetation protection measures.High spatial resolution remote sensing images can be used to detect subtle vegetation changes.The major objective of this study was to map and quantify forest vegetation changes in a national scenic location,the Purple Mountains of Nanjing,China,using multi-temporal cross-sensor high spatial resolution satellite images to identify the main drivers of the vegetation changes and provide a reference for sustainable management.We used Quickbird images acquired in 2004,IKONOS images acquired in 2009,and WorldView2 images acquired in 2015.Four pixel-based direct change detection methods including the normalized difference vegetation index difference method,multi-index integrated change analysis(MIICA),principal component analysis,and spectral gradient difference analysis were compared in terms of their change detection performances.Subsequently,the best pixel-based detection method in conjunction with object-oriented image analysis was used to extract subtle forest vegetation changes.An accuracy assessment using the stratified random sampling points was conducted to evaluate the performance of the change detection results.The results showed that the MIICA method was the best pixel-based change detection method.And the object-oriented MIICA with an overall accuracy of 0.907 and a kappa coefficient of 0.846 was superior to the pixel-based MIICA.From 2004 to 2009,areas of vegetation gain mainly occurred around the periphery of the study area,while areas of vegetation loss were observed in the interior and along the boundary of the study area due to construction activities,which contributed to 79%of the total area of vegetation loss.During 2009–2015,the greening initiatives around the construction areas increased the forest vegetation coverage,accounting for 84%of the total area of vegetation gain.In spite of this,vegetation loss occurred in the interior of the Purple Mountains due to infrastructure development that caused conversion from vegetation to impervious areas.We recommend that:(1)a local multi-agency team inspect and assess law enforcement regarding natural resource utilization;and(2)strengthen environmental awareness education.
基金supported by the Global Energy Interconnection Group Co.,Ltd.,Science and Technology Project(SGGEIG00JYJS2100032)。
文摘This paper proposes a comprehensive framework for estimating the regional rooftop photovoltaic(PV)potential.The required rooftop information is extracted from Gao Fen-7 satellite images.In particular,the rooftop area is obtained using a semantic segmentation network.The azimuth and inclination angles are calculated based on the digital surface model.In addition,to improve the accuracy of the economic evaluation,buildings are divided into commercial and industrial buildings and residential buildings.Based on the difference in the roof inclination,the rooftops can be divided into flat roofs,on which the PV panels are installed with the optimal inclination angle,and sloped rooftops,on which the PV panels are installed in a lay-flat manner.The solar irradiation on the plane-of-array is calculated using the isotropic sky translocation model.Then,the available installed capacity and generation potential of the rooftop PV is obtained.Finally,the net present value,dynamic payback period,and internal rate of return are used to evaluate the economic efficiency of the rooftop PV project.The proposed framework is applied in the Da Xing district of Beijing,China,with a total area of 546.84 km^(2).The results show that the rooftop area and available installed capacity of PV are 25.63 km^(2)and 1487.45 MWp,respectively.The annual rooftop PV generation potential is 2832.23 GWh,with significant economic returns.
基金funded by Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia,under grant No.(PNURSP2022R161).
文摘The analysis of remote sensing image areas is needed for climate detec-tion and management,especially for monitoringflood disasters in critical environ-ments and applications.Satellites are mostly used to detect disasters on Earth,and they have advantages in capturing Earth images.Using the control technique,Earth images can be used to obtain detailed terrain information.Since the acquisi-tion of satellite and aerial imagery,this system has been able to detectfloods,and with increasing convenience,flood detection has become more desirable in the last few years.In this paper,a Big Data Set-based Progressive Image Classification Algorithm(PICA)system is introduced to implement an image processing tech-nique,detect disasters,and determine results with the help of the PICA,which allows disaster analysis to be extracted more effectively.The PICA is essential to overcoming strong shadows,for proper access to disaster characteristics to false positives by operators,and to false predictions that affect the impact of the disas-ter.The PICA creates tailoring and adjustments obtained from satellite images before training and post-disaster aerial image data patches.Two types of proposed PICA systems detect disasters faster and more accurately(95.6%).
文摘Ice and snow domint the land features in Antarctica. The great brightness and poorcontrast of ice and snow and streaking noise in satellite image make the procedure of image processing difficult. On the other hand however, the contrast between bare rock land/sea water and ice/snow is so high that the details of image will be overcompressed.In the light of characteristics of satellite image in Antarctica, a filtering to remove streaking noise has adn discussed. Based on automatic identify classification to enhance the details of objects and the method and theory of digital rectification of satellite image with ground control points measured from field survey are also presented.
基金John Hopkins University Applied Physics Lab to support the Imagery of the 2019 DFC datasets
文摘The accuracy of Digital Surface Models(DSMs)generated using stereo matching methods varies due to the varying acquisition conditions and configuration parameters of stereo images.It has been a good practice to fuse these DSMs generated from various stereo pairs to achieve enhanced,in which multiple DSMs are combined through computational approaches into a single,more accurate,and complete DSM.However,accurately characterizing detailed objects and their boundaries still present a challenge since most boundary-ware fusion methods still struggle to achieve sharpened depth discontinuities due to the averaging effects of different DSMs.Therefore,we propose a simple and efficient adaptive image-guided DSM fusion method that applies k-means clustering on small patches of the orthophoto to guide the pixel-level fusion adapted to the most consistent and relevant elevation points.The experiment results show that our proposed method has outperformed comparing methods in accuracy and the ability to preserve sharpened depth edges.