期刊文献+
共找到13篇文章
< 1 >
每页显示 20 50 100
Scene image recognition with knowledge transfer for drone navigation
1
作者 DU Hao WANG Wei +2 位作者 WANG Xuerao ZUO Jingqiu WANG Yuanda 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2023年第5期1309-1318,共10页
In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors o... In this paper,we study scene image recognition with knowledge transfer for drone navigation.We divide navigation scenes into three macro-classes,namely outdoor special scenes(OSSs),the space from indoors to outdoors or from outdoors to indoors transitional scenes(TSs),and others.However,there are difficulties in how to recognize the TSs,to this end,we employ deep convolutional neural network(CNN)based on knowledge transfer,techniques for image augmentation,and fine tuning to solve the issue.Moreover,there is still a novelty detection prob-lem in the classifier,and we use global navigation satellite sys-tems(GNSS)to solve it in the prediction stage.Experiment results show our method,with a pre-trained model and fine tun-ing,can achieve 91.3196%top-1 accuracy on Scenes21 dataset,paving the way for drones to learn to understand the scenes around them autonomously. 展开更多
关键词 scene recognition convolutional neural network knowledge transfer global navigation satellite systems(GNSS)-aided
下载PDF
REVISITING THE DOPPLER FILTER OF LEO SATELLITE GNSS RECEIVERS FOR PRECISE VELOCITY ESTIMATION 被引量:1
2
作者 Chen Xi Gao Wenyun Wan Yunheng 《Journal of Electronics(China)》 2013年第2期138-144,共7页
The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase L... The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers. 展开更多
关键词 Global navigation satellite systems (GNSS) VELOCITY Doppler filter Centimetre level
下载PDF
Status of UnDifferenced and Uncombined GNSS Data Processing Activities in China
3
作者 Pengyu HOU Delu CHE +3 位作者 Teng LIU Jiuping ZHA Yunbin YUAN Baocheng ZHANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第3期135-144,共10页
With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive opti... With the continued development of multiple Global Navigation Satellite Systems(GNSS)and the emergence of various frequencies,UnDifferenced and UnCombined(UDUC)data processing has become an increasingly attractive option.In this contribution,we provide an overview of the current status of UDUC GNSS data processing activities in China.These activities encompass the formulation of Precise Point Positioning(PPP)models and PPP-Real-Time Kinematic(PPP-RTK)models for processing single-station and multi-station GNSS data,respectively.Regarding single-station data processing,we discuss the advancements in PPP models,particularly the extension from a single system to multiple systems,and from dual frequencies to single and multiple frequencies.Additionally,we introduce the modified PPP model,which accounts for the time variation of receiver code biases,a departure from the conventional PPP model that typically assumes these biases to be time-constant.In the realm of multi-station PPP-RTK data processing,we introduce the ionosphere-weighted PPP-RTK model,which enhances the model strength by considering the spatial correlation of ionospheric delays.We also review the phase-only PPP-RTK model,designed to mitigate the impact of unmodelled code-related errors.Furthermore,we explore GLONASS PPP-RTK,achieved through the application of the integer-estimable model.For large-scale network data processing,we introduce the all-in-view PPP-RTK model,which alleviates the strict common-view requirement at all receivers.Moreover,we present the decentralized PPP-RTK data processing strategy,designed to improve computational efficiency.Overall,this work highlights the various advancements in UDUC GNSS data processing,providing insights into the state-of-the-art techniques employed in China to achieve precise GNSS applications. 展开更多
关键词 Global navigation satellite systems(GNSS) UnDifferenced and UnCombined(UDUC) Precise Point Positioning(PPP) PPP-Real-Time Kinematic(PPP-RTK) single-station data processing multi-station data processing
下载PDF
Advances in BeiDou Navigation Satellite System(BDS)and satellite navigation augmentation technologies 被引量:11
4
作者 Rui Li Shuaiyong Zheng +4 位作者 Ershen Wang Jinping Chen Shaojun Feng Dun Wang Liwen Dai 《Satellite Navigation》 2020年第1期126-148,共23页
Several noteworthy breakthroughs have been made with the BeiDou Navigation Satellite System(BDS)and other global navigation satellite systems as well as the associated augmentation systems,such as the commissioning of... Several noteworthy breakthroughs have been made with the BeiDou Navigation Satellite System(BDS)and other global navigation satellite systems as well as the associated augmentation systems,such as the commissioning of the BDS-3 preliminary system and the successful launch of the first BDS-3 GEO satellite which carries the satellite-based augmentation payload.Presently,BDS can provide basic services globally,and its augmentation system is also being tested.This paper gives an overview of BDS and satellite navigation augmentation technologies.This overview is divided into four parts,which include the system segment technologies,satellite segment technologies,propagation segment technologies,and user segment technologies.In each part,these technologies are described from the perspectives of preliminary information,research progress,and summary.Moreover,the significance and progress of the BeiDou Satellite-based Augmentation System(BDSBAS),low earth orbit augmentation,and the national BeiDou ground-based augmentation system are presented,along with the airborne-based augmentation system.Furthermore,the conclusions and discussions covering popular topics for research,frontiers in research and development,achievements,and suggestions are listed for future research. 展开更多
关键词 BeiDou navigation satellite System satellite navigation augmentation systems System segment technologies satellite segment technologies Propagation segment technologies User segment technologies
原文传递
Performance evaluation of neural network TEC forecasting models over equatorial low-latitude Indian GNSS station 被引量:1
5
作者 G.Sivavaraprasad V.S.Deepika +2 位作者 D.Sreenivasa Rao M.Ravi Kumar M.Sridhar 《Geodesy and Geodynamics》 2020年第3期192-201,共10页
Global Positioning System(GPS)services could be improved through prediction of ionospheric delays for satellite-based radio signals.With respect to latitude,longitude,local time,season,solar cycle and geomagnetic acti... Global Positioning System(GPS)services could be improved through prediction of ionospheric delays for satellite-based radio signals.With respect to latitude,longitude,local time,season,solar cycle and geomagnetic activity the Total Electron Content(TEC)have significant variations in both time and space.These temporal and spatial TEC variations driven by interplanetary space weather conditions such as solar and geomagnetic activities can degrade the communication and navigation links of GPS.Hence,in this paper,performance of TEC forecasting models based on Neural Networks(NN)have been evaluated to forecast(1-h ahead)ionospheric TEC over equatorial low latitude Bengaluru e12:97+N;77:59+ET,Global Navigation Satellite System(GNSS)station,India.The VTEC data is collected for 2009 e2016(8 years)during current 24 th solar cycle.The input space for the NN models comprise the solar Extreme UV flux,F10.7 proxy,a geomagnetic planetary A index(AP)index,sunspot number(SSN),disturbance storm time(DST)index,solar wind speed(Vsw),solar wind proton density(Np),Interplanetary Magnetic Field(IMF Bz).The performance of NN based TEC forecast models and International Reference Ionosphere,IRI-2016 global TEC model has evaluated during testing period,2016.The NN based model driven by all the inputs,which is a NN unified model(NNunq)has shown better accuracy with Mean Absolute Error(MAE)of 3.15 TECU,Mean Square Deviation(MSD)of 16.8 and Mean Absolute Percentage Error(MAPE)of 19.8%and is 1 e25%more accurate than the other NN based TEC forecast models(NN1,NN2 and NN3)and IRI-2016 model.NNunq model has less Root Mean Square Error(RMSE)value 3.8 TECU and highest goodness-of-fit(R2)with 0.85.The experimental results imply that NNunq/NN1 model forecasts ionospheric TEC accurately across equatorial low-latitude GNSS station and IRI-2016 model performance is necessarily improved as its forecast accuracy is limited to 69 e70%. 展开更多
关键词 Global Positioning System(GPS) Global navigation satellite systems(GNSS) Total electron content(TEC) International reference ionosphere(IRI) Neural networks
下载PDF
Comparison of availability and reliability among different combined-GNSS/RNSS precise point positioning 被引量:1
6
作者 陈健 Yue Dongjie +2 位作者 Zhu Shaolin Liu Zhiqiang Dai Jianbiao 《High Technology Letters》 EI CAS 2020年第3期235-242,共8页
With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLO... With emergence of the BeiDou Navigation Satellite System(BDS), the Galileo Satellite Navigation System(Galileo), the Quasi-Zenith Satellite System(QZSS)and the restoration of the Global Navigation Satellite System(GLONASS), the single Global Positioning System(GPS) has been gradually expanded into multiple global and regional navigation satellite systems(multi-GNSS/RNSS). In view of differences in these 5 systems, a consolidated multi-GNSS/RNSS precise point positioning(PPP) observation model is deduced in this contribution. In addition, the performance evaluation of PPP for multi-GNSS/RNSS is conducted using a large number of the multi-GNSS experiment(MGEX) station datasets. Experimental results show that multi-GNSS/RNSS can guarantee plenty of visible satellites effectively. Compared with single-system GPS, PDOP, HDOP, and VDOP values of the multi-GNSS/RNSS are improved by 46.8%, 46.5% and 46.3%, respectively. As for convergence time, the static and kinematic PPP of multi-GNSS/RNSS are superior to that of the single-system GPS, whose reliability, availability, and stability drop sharply with the increasing elevation cutoff. At satellite elevation cutoff of 40 °, the single-system GPS fails to carry out continuous positioning because of the insufficient visible satellites, while the multi-GNSS/RNSS PPP can still get positioning solutions with relatively high accuracy, especially in the horizontal direction. 展开更多
关键词 precise point positioning(PPP) positioning accuracy convergence rate multiple global and regional navigation satellite systems(multi-GNSS/RNSS) reliability and availability
下载PDF
Airborne GNSS-Receiver Threat Detection in No-Fading Environments
7
作者 Omid Sharifi-Tehrani 《Journal of Beijing Institute of Technology》 EI CAS 2022年第6期613-620,共8页
Jamming and spoofing detection of global navigation satellite systems(GNSS)is of great importance.Civil and military aerial platforms use GNSS as main navigation systems and these systems are main target of threat att... Jamming and spoofing detection of global navigation satellite systems(GNSS)is of great importance.Civil and military aerial platforms use GNSS as main navigation systems and these systems are main target of threat attacks.In this paper a simple method based on different empirical probability density functions of successive received signal powers and goodness of fit tech-nique is proposed for airborne platforms such as unmanned aerial vehicle(UAV),in no fading envi-ronment.The two different paths between UAV-satellite and UAV-threat,experience different empirical probability density functions which can be used to distinguish between authentic and threat signals.Simulation results including detection and false alarm probabilities show good perfor-mance of proposed method as well as low computational burden. 展开更多
关键词 detection global navigation satellite systems(GNSS) jamming SPOOFING unmanned aerial vehicle
下载PDF
Diurnal variation of precipitable water vapor over Central and South America
8
作者 Amalia Meza Luciano Mendoza +2 位作者 María Paula Natali Clara Bianchi Laura Fernández 《Geodesy and Geodynamics》 2020年第6期426-441,共16页
Annual and seasonal diurnal precipitable water vapor(PWV)variations over Central and South America are analyzed for the period 2007-2013.PWV values were obtained from Global Navigation Satellite Systems(GNSS)observati... Annual and seasonal diurnal precipitable water vapor(PWV)variations over Central and South America are analyzed for the period 2007-2013.PWV values were obtained from Global Navigation Satellite Systems(GNSS)observations of sixty-nine GNSS tracking stations.Histograms by climate categories show that PWV values for temperate,polar and cold dry climate have a positive skewed distribution and for tropical climates(except for monsoon subtype)show a negative skewed distribution.The diurnal PWV and surface temperatures(T)anomaly datasets are analyzed by using principal components analysis(PCA).The first two modes represent more than 90%of the PWV variability.The first PCA mode of PWV variability shows a maximum amplitude value in the late afternoon few hours later than the respective values for surface temperature(T),therefore the temperature and the surface conditions(to yield evaporation)could be the main agents producing this variability;PWV variability in inland stations are mainly represented by this mode.The second mode of PWV variability shows a maximum amplitude at midnight,a possible explanation of this behavior is the effect of the sea/valley breeze.The coastal and valley stations are affected by this mode in most cases.Finally,the"undefined"stations,surrounded by several water bodies,are mainly affected by the second mode with negative eigenvectors.In the seasonal analysis,both the undefined and valley stations constitute the main cases that show a sea or valley breeze only during some seasons,while the rest of the year they present a behavior according to their temperature and the surface conditions.As a result,the PCA proves to be a useful numerical tool to represent the main sub-daily PWV variabilities. 展开更多
关键词 Precipitable water vapor(PWV) Global navigation satellite systems(GNSS) Koppen and Geiger climate type classification(K-G) Surface temperature Principal component analysis(PCA)
下载PDF
Geodynamics of the Calabrian Arc area (Italy) inferred from a dense GNSS network observations
9
作者 Oiuseppe Casula 《Geodesy and Geodynamics》 2016年第1期76-86,共11页
The tectonics and geodynamics of the Calabria region are presented in this study. These are inferred by precise computation of Global Navigation Satellite Systems (GNSS) per~ manent station velocities in a stable Eu... The tectonics and geodynamics of the Calabria region are presented in this study. These are inferred by precise computation of Global Navigation Satellite Systems (GNSS) per~ manent station velocities in a stable Eurasian reference framework. This allowed computation of the coordinates, variance and covariance matrixes, and horizontal and vertical velocities of the 36 permanent sites analyzed, together with the strain rates, and using different techniques. Interesting geodynamic phenomena are presented, including compressional, and deformational fields in the Tyrrhenian coastal sites of Calabria, extensional trends of the Ionian coastal sites, and sliding movement of the Crotone Basin. Conversely, on the northern Tyrrhenian side of the network near the Cilento Park area, the usual extensional tectonic perpendicular to the Apennine chain is observed. The large- scale pattern of the GNSS height velocities is shown, which is characterized by general interesting geodynamic vertical effects that appear to be due to geophysical movement and anthropic activity. Finally, the strain-rate fields computed through three different tech- niques are compared. 展开更多
关键词 Global navigation satellite systems(GNSS)GeodesyGeodynamicsCalabrian ArcStrain rateTectonicsReference frameNetwork adjustment
下载PDF
A new inter‑system double‑difference RTK model applicable to both overlapping and non‑overlapping signal frequencies
10
作者 Wenhao Zhao Genyou Liu +3 位作者 Ming Gao Bo Zhang Shengjun Hu Minghui Lyu 《Satellite Navigation》 SCIE EI CSCD 2023年第3期82-91,共10页
Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambig... Aiming at the problem that the traditional inter-system double-difference model is not suitable for non-overlapping signal frequencies,we propose a new inter-system double-difference model with single difference ambiguity estimation,which can be applied for both overlapping and non-overlapping signal frequencies.The single difference ambiguities of all satellites and Differential Inter-System Biases(DISB)are first estimated,and the intra-system double difference ambiguities,which have integer characteristics,are then fixed.After the ambiguities are successfully fixed,high-precision coordinates and DISB can be obtained with a constructed transformation matrix.The model effectively avoids the DISB parameter filtering discontinuity caused by the reference satellite transformation and the low precision of the reference satellite single difference ambiguity calculated with the code.A zero-baseline using multiple types of receivers is selected to verify the stability of the estimated DISB.Three baselines with different lengths are selected to assess the positioning performance of the model.The ionospheric-fixed and ionospheric-float models are used for short and medium-long baselines,respectively.The results show that the Differential Inter-System Code Biases(DISCB)and Differential Inter-System Phase Biases(DISPB)have good stability regardless of the receivers type and the signal frequency used and can be calibrated to enhance the strength of the positioning model.The positioning results with three baselines of different lengths show that the proposed inter-system double-difference model can improve the positioning accuracy by 6–22%compared with the intra-system double-difference model which selects the reference satellite independently for each system.The Time to First Fix(TTFF)of the two medium-long baselines is reduced by 30%and 29%,respectively. 展开更多
关键词 Global navigation satellite systems Real-time Inter-system biases Ambiguity resolution Medium-long baselines
原文传递
Assessment of GNSS zenith tropospheric delay responses to atmospheric variables derived from ERA5 data over Nigeria
11
作者 Ifechukwu Ugochukwu Nzelibe Herbert Tata Timothy Oluwadare Idowu 《Satellite Navigation》 EI CSCD 2023年第1期167-182,I0005,共17页
Tropospheric delay is a major error caused by atmospheric refraction in Global Navigation Satellite System(GNSS)positioning.The study evaluates the potential of the European Centre for Medium-range Weather Forecast(EC... Tropospheric delay is a major error caused by atmospheric refraction in Global Navigation Satellite System(GNSS)positioning.The study evaluates the potential of the European Centre for Medium-range Weather Forecast(ECMWF)Reanalysis 5(ERA5)atmospheric variables in estimating the Zenith Tropospheric Delay(ZTD).Linear regression models(LRM)are applied to estimate ZTD with the ERA5 atmospheric variables.The ZTD are also estimated using standard ZTD models based on ERA5 and Global Pressure and Temperature 3(GPT3)atmospheric variables.These ZTD estimates are evaluated using the data collected from the permanent GNSS continuously operating reference stations in the Nigerian region.The results reveal that the Zenith Hydrostatic Delay(ZHD)from the LRM and the Saastamoinien model using ERA5 surface pressure are of identical accuracy,having a Root Mean Square(RMS)error of 2.3 mm while the GPT3-ZHD has an RMS of 3.4 mm.For the Zenith Wet Delay(ZWD)component,the best estimates are derived using ERA5 Precipitable Water Vapour(PWV).These include the ZWD derived by the LRM having an average RMS of 20.9 mm and Bevis equation having RMS of 21.1 mm and 21.0 mm for global and local weighted mean temperatures,respectively.The evaluation of GPT3-ZWD estimates gives RMS of 45.8 mm.This study has provided a valuable insight into the application of ERA5 data for ZTD estimation.In line with the fndings of the study,the ERA5 atmospheric variables are recommended for improving the accuracy in ZTD estimation,required for GNSS positioning. 展开更多
关键词 ECMWF reanalysis 5(ERA5) Global navigation satellite systems(GNSS) Global pressure and temperature 3(GPT3) Modelling NIGERIA Zenith tropospheric delay(ZTD)
原文传递
Receiver Autonomous Integrity Monitoring Availability and Fault Detection Capability Comparison Between BeiDou and GPS 被引量:4
12
作者 苏先礼 战兴群 +1 位作者 牛满仓 张炎华 《Journal of Shanghai Jiaotong university(Science)》 EI 2014年第3期313-324,共12页
This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase... This paper used the statistical methods of quality control to assess receiver autonomous integrity monitoring(RAIM) availability and fault detection(FD) capability of BeiDou14(Phase II with 14 satellites),BeiDou(Phase III with 35 satellites) and GPS(with 31 satellites) for the first time. The three constellations are simulated and their RAIM performances are quantified by the global, Asia-Pacific region and temporal variations respectively. RAIM availability must be determined before RAIM detection. It is proposed that RAIM availability performances from satellites and constellation geometry configuration are evaluated by the number of visible satellites(NVS, NVS > 5) and geometric dilution of precision(GDOP, GDOP < 6) together. The minimal detectable bias(MDB) and minimal detectable effect(MDE) are considered as a measure of the minimum FD capability of RAIM in the measurement level and navigation position level respectively. The analyses of simulation results testify that the average global RAIM performances for BeiDou are better than that for GPS except global RAIM holes proportion. Moreover, the Asia-Pacific RAIM performances for BeiDou are much better than that for GPS in all indexes. RAIM availability from constellation geometry configuration and RAIM minimum FD capability for BeiDou14 are better than that for GPS in Asia-Pacific region in all cases, but the BeiDou14 RAIM availability from satellites are worse than GPS's. The methods and conclusions can be used for RAIM prediction and real-time assessment of all kinds of Global Navigation Satellite Systems(GNSS) constellation. 展开更多
关键词 Global navigation satellite systems(GNSS) BeiDou navigation satellite System(BDS) GPS receiver autonomous integrity monitoring(RAIM) AVAILABILITY fault detection(FD) quality control
原文传递
Impact of China’s high speed train window glass on GNSS signals and positioning performance 被引量:3
13
作者 Zhizhao Liu Yangzhao Gong Letao Zhou 《Satellite Navigation》 2020年第1期151-166,共16页
High speed train(HST)is an excellent platform to perform ultra-high spatial and temporal resolution observations of atmosphere using global navigation satellite systems(GNSS).However,we find that signal attenuation ca... High speed train(HST)is an excellent platform to perform ultra-high spatial and temporal resolution observations of atmosphere using global navigation satellite systems(GNSS).However,we find that signal attenuation caused by HST window glass is a major barrier for HST-based GNSS applications inside HST chambers.A field experiment is conducted to analyze the effect of HST glass on GNSS signal propagation.In the experiment,GNSS observations are collected and analyzed from a receiver covered with an HST window glass and one with an open-sky view.The size of the HST window glass is 670 mm×720 mm,with a thickness of 34 mm.The window glass is a double-glazing glass in which each layer has an actual thickness of 6 mm,and the two layers are separated by an air gap of 22 mm.The experiment results indicate that HST window glass can cause significant degradation to GNSS signals and even loss of tracking of the signal.Based on statistical results,HST window glass causes 39%,56%,49%,and 59%loss in GPS,GLONASS,Galileo,and BDS signals,respectively.Additionally,up to 20 dB-Hz of carrier-to-noise ratio(C/N0)degradation is also observed in the remaining observations.The significant signal attenuation and loss further lead to the decrease in the number of tracked satellites and occurrence of more cycle slips.The results of the study indicate that 44-230 cycle slips are detected for the HST glass-covered receiver whereas the receiver without glass does not exhibit more than 16 cycle slips.Additionally,the number of GNSS satellites tracked by the HST glass-covered receiver is reduced by 65%owing to the loss of signal.Furthermore,GNSS positioning performances from two receivers are also tested.With respect to GPS+GLONASS static precise point positioning(PPP),HST glass causes a degradation of 1.516 m and 1.159 m in the single-frequency and dual-frequency three-dimensional positioning accuracy,respectively.With respect to the GPS+GLONASS kinematic PPP,the accuracy degradations for single-frequency and dual-frequency kinematic PPP are 2.670 m and 4.821 m,respectively. 展开更多
关键词 Global navigation satellite systems(GNSS) High-speed train(HST)window glass Signal attenuation and loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部