期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Reliability Modelling and Analysis of Satellite Propulsion System Based on Reliability Block Diagram and Extended Object-Oriented Petri Net
1
作者 周行 黄洪钟 《Journal of Donghua University(English Edition)》 EI CAS 2015年第6期1001-1005,共5页
Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satel... Modern satellite propulsion systems are generally designed to fulfill multiphase-missions.Traditional reliability modelling methods have problems of inadequate depict capacity considering complex systems such as satellite propulsion system.An extended object-oriented Petri net(EOOPN)method was proposed to facilitate the reliability modelling of satellite propulsion system in the paper.The proposed method was specified for modelling of phased mission system,and it could be implemented by generating combination of Petri net(PN)principles and object-oriented(OO)programming.The effectiveness of the proposed method was demonstrated through the reliability modelling of a satellite propulsion system with EOOPN.The major advantage of the proposed method is that the dimension of net model can be reduced significantly,and phased mission system at system,phase,or component levels can be respectively depicted.Furthermore,the state-space explosion problem is solved by the proposed EOOPN model efficiently. 展开更多
关键词 satellite propulsion system extended object-oriented Petri net(EOOPN) object-oriented programming reliability modeling reliability analysis
下载PDF
Ignition processes and characteristics of charring conductive polymers with a cavity geometry in precombustion chamber for applications in micro/nano satellite hybrid rocket motors
2
作者 Zhiyuan Zhang Hanyu Deng +2 位作者 Wenhe Liao Bin Yu Zai Yu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期55-66,共12页
The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of... The arc ignition system based on charring polymers has advantages of simple structure,low ignition power consumption and multiple ignitions,which bringing it broadly application prospect in hybrid propulsion system of micro/nano satellite.However,charring polymers alone need a relatively high input voltage to achieve pyrolysis and ignition,which increases the burden and cost of the power system of micro/nano satellite in practical application.Adding conductive substance into charring polymers can effectively decrease the conducting voltage which can realize low voltage and low power consumption repeated ignition of arc ignition system.In this paper,a charring conductive polymer ignition grain with a cavity geometry in precombustion chamber,which is composed of PLA and multiwall carbon nanotubes(MWCNT)was proposed.The detailed ignition processes were analyzed and two different ignition mechanisms in the cavity of charring conductive polymers were revealed.The ignition characteristics of charring conductive polymers were also investigated at different input voltages,ignition grain structures,ignition locations and injection schemes in a visual ignition combustor.The results demonstrated that the ignition delay and external energy required for ignition were inversely correlated with the voltages applied to ignition grain.Moreover,the incremental depth of cavity shortened the ignition delay and external energy required for ignition while accelerated the propagation of flame.As the depth of cavity increased from 2 to 6 mm(at 50 V),the time of flame propagating out of ignition grain changed from 235.6 to 108 ms,and values of mean ignition delay time and mean external energy required for ignition decreased from 462.8 to 320 ms and 16.2 to 10.75 J,respectively.The rear side of the cavity was the ideal ignition position which had a shorter ignition delay and a faster flame propagation speed in comparison to other ignition positions.Compared to direct injection scheme,swirling injection provided a more favorable flow field environment in the cavity,which was beneficial to ignition and initial flame propagation,but the ignition position needed to be away from the outlet of swirling injector.At last,the repeated ignition characteristic of charring conductive polymers was also investigated.The ignition delay time and external energy required for ignition decreased with repeated ignition times but the variation was decreasing gradually. 展开更多
关键词 Micro/nano satellite hybrid propulsion Arc ignition Charring conductive polymer Ignition mechanism Ignition characteristic Repeated ignition
下载PDF
Electric Thrusters Redundancy Configuration Strategy Study for All Electric Propulsion Platform Station-Keeping
3
作者 Min Wang Qiang Li Xin’gang Liang 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2018年第3期55-61,共7页
Electric propulsion is used for all electric propulsion satellites to perform the orbit transfer,attitude control and station-keeping tasks. Generally electric propulsion subsystem contains 4 thrusters. But if one thr... Electric propulsion is used for all electric propulsion satellites to perform the orbit transfer,attitude control and station-keeping tasks. Generally electric propulsion subsystem contains 4 thrusters. But if one thruster fails in the beginning of satellite lifetime,other thrusters will undertake all the firing tasks. The firing time will be 2 to 3 times of thrusters without failure. Thus it may go beyond the allow ed lifetime of thruster. This paper puts forward two thruster redundancy configuration solutions with 6 thrusters to solve this problem. Two layout configurations and their corresponding station-keeping strategies are simulated and compared. The results show that the maximum firing time of both layout configurations can meet the lifetime limitation. This solution is a good reference for all electric propulsion satellites design. 展开更多
关键词 all electric propulsion satellite station-keeping electric thrusters configuration electric thruster layout FAILURE REDUNDANCY
下载PDF
Solid rocket propulsion technology for de-orbiting spacecraft 被引量:1
4
作者 Adam OKNINSKI 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2022年第3期128-154,共27页
This paper presents the topic of using solid rocket propulsion for de-orbiting spacecraft,in order to fulfil space debris mitigation requirements.The benefits and disadvantages of using such means are discussed.A dedi... This paper presents the topic of using solid rocket propulsion for de-orbiting spacecraft,in order to fulfil space debris mitigation requirements.The benefits and disadvantages of using such means are discussed.A dedicated system can be implemented in the satellite design phase and shall be a key subsystem of platforms inserted into orbit.Uncontrolled,semi-controlled and controlled de-orbit can be completed using solid rocket motors.Their impact on the space debris environment is discussed.Specific requirements for dedicated propellants and systems are provided.While the majority of presently developed rocket systems worldwide require high burn rates,several applications,including de-orbiting,benefit from solid propellants with decreased regression rates.This allows limiting spacecraft accelerations and loads during de-orbit manoeuvres.Moreover,the requirement of minimising solid particle generation is presented.Heritage technology from the Mercury and Gemini human spaceflight programmes,where de-orbit motors were used,is shown.Historical Soviet,American and Chinese film-return-capsule solid propellant retrorockets,enabling deorbit,are also presented.A detailed survey of current work worldwide on end-of-life disposal using solid propulsion is included.Challenges of developing dedicated systems are discussed.Finally,an outlook on solid rocket motor utilisation for space debris mitigation is provided. 展开更多
关键词 De-orbit De-orbiting technology End-of-life disposal satellite propulsion system development Solid propellant Solid rocket motor Space debris mitigation Space traffic management
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部