Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire'...Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire' s (C-W's) equations, which describe the relative motion between two satellites. But according to some special examples and qualitative analysis , neither the initial parameters nor the period of the solution of C-W' s equations accord with the actual situation, and the conservation of energy is no longer held. A new method developed from orbital element description of single satellite , named relative orbital element method ( ROEM) , was introduced. This new method, with clear physics conception and wide application range, overcomes the limitation of C-W s equation , and the periodic solution is a natural conclusion. The simplified equation of the relative motion is obtained when the eccentricity of the main satellite is small. Finally, the results of the two methods (C-W' s equation and ROEM) are compared and the limitations of C-W s equations are pointed out and explained.展开更多
Altimeter wave period data obtained from continental shelf seas are analyzed in this paper. Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their perform...Altimeter wave period data obtained from continental shelf seas are analyzed in this paper. Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their performances are assessed using independent validation dataset in four sites in the open ocean of China. To provide more accurate wave period estimation, new coefficients are applied to reliable in situ data. Comparison of our estimated the wave periods with new linear calibrations based on independent data of Seapac 2100 deployed in the East China Sea and South China Sea showed that the accuracy was improved over estimates determined from earlier empirical models. Regional analysis indicated that the wave period model works better under wind sea condition.展开更多
This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of...This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are cal- culated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areo- stationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both lin- early stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenval- ues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.展开更多
准确预测区域尺度的小麦成熟期,指挥麦收机械化作业有序开展,具有十分重要的社会和经济效益。该文针对目前区域冬小麦成熟期预测中时效性差、缺乏空间分布以及缺少定量描述等突出问题,选择华北地区河北、河南和山东3省冬小麦为研究对象...准确预测区域尺度的小麦成熟期,指挥麦收机械化作业有序开展,具有十分重要的社会和经济效益。该文针对目前区域冬小麦成熟期预测中时效性差、缺乏空间分布以及缺少定量描述等突出问题,选择华北地区河北、河南和山东3省冬小麦为研究对象,首先基于S-G滤波后的2013年冬小麦生育期时间序列MODIS LAI,采用动态阈值法获取抽穗期具体日期,即叶面积指数(LAI)达到峰值时的具体日期;然后基于由2008-2012年农业气象资料与地面气象资料构建的抽穗-成熟期有效积温模型和总辐射模型,逐个栅格单元计算MODIS LAI获取的抽穗期具体日期到当前日期的积温、太阳辐射总量,并结合全球多模式集合预报(THORPEX Interactive Grand Global Ensemble,TIGGE)资料对当前日期(5月10号至6月8号)之后的16 d冬小麦成熟期进行逐日动态预测以得到全部区域的成熟期预测值;最后采用农业气象站点的成熟期观测值对预测结果进行验证,结果表明:冬小麦成熟期预测值与观测值的决定系数R2为0.92,均方根误差RMSE约为3 d,两者具有良好的相关性。该研究方法对其他大区域的农作物成熟期预测具有借鉴价值。展开更多
基金Foundation items: the National Natural Science Foundation of China (10202008) the Post Doctoral Science Foundation of China ((2001)31)
文摘Recently, the research of dynamics and control of the satellite formation flying has been attracting a great deal of attentions of the researchers. The theory of the research was mainly based on Clohessy-Wiltshire' s (C-W's) equations, which describe the relative motion between two satellites. But according to some special examples and qualitative analysis , neither the initial parameters nor the period of the solution of C-W' s equations accord with the actual situation, and the conservation of energy is no longer held. A new method developed from orbital element description of single satellite , named relative orbital element method ( ROEM) , was introduced. This new method, with clear physics conception and wide application range, overcomes the limitation of C-W s equation , and the periodic solution is a natural conclusion. The simplified equation of the relative motion is obtained when the eccentricity of the main satellite is small. Finally, the results of the two methods (C-W' s equation and ROEM) are compared and the limitations of C-W s equations are pointed out and explained.
基金Supported by the High-Tech Research and Development Program of China (863 Program, No. 2001AA633070 2003AA604040)OceanScience Foundation for the Youth of State Oceanic Administration of
文摘Altimeter wave period data obtained from continental shelf seas are analyzed in this paper. Empirical models are introduced for zero up-crossing and peak wave period calculation with TOPEX/POSEIDON data. Their performances are assessed using independent validation dataset in four sites in the open ocean of China. To provide more accurate wave period estimation, new coefficients are applied to reliable in situ data. Comparison of our estimated the wave periods with new linear calibrations based on independent data of Seapac 2100 deployed in the East China Sea and South China Sea showed that the accuracy was improved over estimates determined from earlier empirical models. Regional analysis indicated that the wave period model works better under wind sea condition.
基金supported by the National Basic Research Program of China (973 Program,No.2012CB720000)the National Natural Science Foundation of China(Grant No.11072122)
文摘This study investigates the problem of areostationary orbits around Mars in three-dimensional space. Areostationary orbits are expected to be used to establish a future telecommunication network for the exploration of Mars. However, no artificial satellites have been placed in these orbits thus far. The characteristics of the Martian gravity field are presented, and areostationary points and their linear stability are cal- culated. By taking linearized solutions in the planar case as the initial guesses and utilizing the Levenberg-Marquardt method, families of periodic orbits around areo- stationary points are shown to exist. Short-period orbits and long-period orbits are found around linearly stable areostationary points, but only short-period orbits are found around unstable areostationary points. Vertical periodic orbits around both lin- early stable and unstable areostationary points are also examined. Satellites in these periodic orbits could depart from areostationary points by a few degrees in longitude, which would facilitate observation of the Martian topography. Based on the eigenval- ues of the monodromy matrix, the evolution of the stability index of periodic orbits is determined. Finally, heteroclinic orbits connecting the two unstable areostationary points are found, providing the possibility for orbital transfer with minimal energy consumption.
文摘准确预测区域尺度的小麦成熟期,指挥麦收机械化作业有序开展,具有十分重要的社会和经济效益。该文针对目前区域冬小麦成熟期预测中时效性差、缺乏空间分布以及缺少定量描述等突出问题,选择华北地区河北、河南和山东3省冬小麦为研究对象,首先基于S-G滤波后的2013年冬小麦生育期时间序列MODIS LAI,采用动态阈值法获取抽穗期具体日期,即叶面积指数(LAI)达到峰值时的具体日期;然后基于由2008-2012年农业气象资料与地面气象资料构建的抽穗-成熟期有效积温模型和总辐射模型,逐个栅格单元计算MODIS LAI获取的抽穗期具体日期到当前日期的积温、太阳辐射总量,并结合全球多模式集合预报(THORPEX Interactive Grand Global Ensemble,TIGGE)资料对当前日期(5月10号至6月8号)之后的16 d冬小麦成熟期进行逐日动态预测以得到全部区域的成熟期预测值;最后采用农业气象站点的成熟期观测值对预测结果进行验证,结果表明:冬小麦成熟期预测值与观测值的决定系数R2为0.92,均方根误差RMSE约为3 d,两者具有良好的相关性。该研究方法对其他大区域的农作物成熟期预测具有借鉴价值。