In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network e...In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network extension and seamless global coverage has become the focus of power communication tech no logy development.In this study,we propose a satellite-terrestrial integrated network model that can support interconnection and interoperation on the IP layer between the satellite system and the怕rrestrial segment of the existing power communication system.First,the composition and function of the satellite-terrestrial collaborative network are explained.Then,the IP-based protocol stack is described,and a typical applicati on experime nt is con ducted to illustrate the particular process of this protocol stack.Fin ally,a use case of IP interconn ection that depends on GEO satellite communication is detailed.The experime ntal study has showed that the satellite-terrestrial collaborative network can efficiently support various IP applications for the GEI.展开更多
INTRODUCTIONWith the coming of the 21st century, we are faced the problems of the environment, re-sources and population. The ocean is regarded as supplier of resources such as food, minerals,energy and space, and pla...INTRODUCTIONWith the coming of the 21st century, we are faced the problems of the environment, re-sources and population. The ocean is regarded as supplier of resources such as food, minerals,energy and space, and plays an important role in sustainable economic development. At thesame time the ocean has a very important effect on the worldwide environmental changes.展开更多
GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Poi...GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.展开更多
Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the...Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.展开更多
Responsiveness is a challenge for space systems to sustain competitive advantage over al-ternate non-spaceborne technologies.For a satellite in its operational orbit,in-orbit responsiveness is defined as the capabilit...Responsiveness is a challenge for space systems to sustain competitive advantage over al-ternate non-spaceborne technologies.For a satellite in its operational orbit,in-orbit responsiveness is defined as the capability of the satellite to respond to a given demand in a timely manner.In this paper,it is shown that Average Wait Time(AWT) to pick up user demand from ground segment is the ap-propriate metric to evaluate the effect of ground segment location on in-orbit responsiveness of Low Earth Orbit(LEO) sunsynchronous satellites.This metric depends on pattern of ground segment access to satellite and distribution of user demands in time domain.A mathematical model is presented to determine pattern of ground segment access to satellite and concept of cumulative distribution function is used to simulate distribution of user demands for markets with different total demand scenarios.Monte Carlo simulations are employed to take account of uncertainty in distribution and total volume of user demands.Sampling error and standard deviation are used to ensure validity of AWT metric obtained from Monte Carlo simulations.Incorporation of the proposed metric in the ground segment site location process results in more responsive satellite systems which,in turn,lead to greater customer satisfaction levels and attractiveness of spaceborne systems for different applications.Finally,simula-tion results for a case study are presented.展开更多
Low Earth Orbits (LEO) satellites are used for public communication and for scientific purposes. These satellites provide opportunities for investigations for which alternative techniques are either difficult or impos...Low Earth Orbits (LEO) satellites are used for public communication and for scientific purposes. These satellites provide opportunities for investigations for which alternative techniques are either difficult or impossible to apply. Ground stations have to be established in order to communicate with such satellites. Usually these satellites communicate with ground stations at S-band. The communication quality depends on the performance of the satellite ground station, in addition to that of satellite. The performance of the satellite ground stations is expressed through Figure of Merit. The aim of this paper is to analyze the rain attenuation impact on the performance of the respective ground station. Rain attenuation depends on geographical location where the satellite ground station is implemented. In order to compare this effect on satellite ground station performance, some cities of Europe are considered. Finally, the rain attenuation impact on the satellite ground station Figure of Merit for the hypothetical satellite ground station installed in Prishtina is analyzed.展开更多
Juniperus excelsa subsp.polycarpos,(Persian juniper),is found in northeast Iran.In this study,the relationship between ground cover and vegetation indices have been investigated using remote sensing data for a Persian...Juniperus excelsa subsp.polycarpos,(Persian juniper),is found in northeast Iran.In this study,the relationship between ground cover and vegetation indices have been investigated using remote sensing data for a Persian juniper forest.Multispectral data were analyzed based on the Advanced Visible and Near Infrared Radiometer type 2 and panchromatic data obtained by the Panchromatic Remote-sensing Instrument for Stereo Mapping sensors,both on board the advanced land observing satellite(ALOS).The ground cover was calculated using field survey data from 25 sub-sample plots and the vegetation indices were derived with 595 maximum filtering algorithm from ALOS data.R2 values were calculated for the normalized difference vegetation index(NDVI)and various soil-adjusted vegetation indices(SAVI)with soilbrightness-dependent correction factors equal to 1 and 0.5,a modified SAVI(MSAVI)and an optimized SAVI(OSAVI).R2 values for the NDVI,MSAVI,OSAVI,SAVI(1),and SAVI(0.5)were 0.566,0.545,0.619,0.603,and 0.607,respectively.Total ratio vegetation index for arid and semi-arid regions based on spectral wavelengths of ALOS data with an R2 value 0.633 was considered.Results of the current study will be useful for forest inventories in arid and semi-arid regions in addition to assisting decisionmaking for natural resource managers.展开更多
Meteorological satellite ground application system resources are limited. Abnormal satellite missions often lead to hopple of system resources. In order to analyze the problem, this paper presents an anomaly analysis ...Meteorological satellite ground application system resources are limited. Abnormal satellite missions often lead to hopple of system resources. In order to analyze the problem, this paper presents an anomaly analysis method for meteorological satellite ground system based on resource bottleneck. Through the CPU, memory and I/O, several types of resources in-depth were analyzed to find the bottleneck caused by the problem, thus providing recommendations for application optimization. Experimental analysis shows that the proposed method can reasonably analyze the resource bottleneck of CPU, memory and I/O, and draw a good conclusion. To solve the meteorological satellite application system application anomaly caused by the bottleneck of the problem, the application of optimization to a certain extent plays a positive role.展开更多
Meteorological satellite ground application system carries a large number of applications. These applications deal with a variety of tasks. In order to classify these applications according to the resource consumption...Meteorological satellite ground application system carries a large number of applications. These applications deal with a variety of tasks. In order to classify these applications according to the resource consumption and improve the rational allocation of system resources, this paper introduces several application analysis algorithms. Firstly, the requirements are abstractly described, and then analyzed by hierarchical clustering algorithm. Finally, the benchmark analysis of resource consumption is given. Through the benchmark analysis of resource consumption, we will give a more accurate meteorological satellite ground application system.展开更多
We present validation between total ozone from satellite and ground-based observations of the Dobson and Brewer spectrometers and ozone radiosonde at Zhongshan and Syowa Antarctic research stations, for September 2004...We present validation between total ozone from satellite and ground-based observations of the Dobson and Brewer spectrometers and ozone radiosonde at Zhongshan and Syowa Antarctic research stations, for September 2004 to March 2009. Results show that mean bias error between Zhongshan (Syowa) and Ozone Monitor Instrument Total Ozone Mapping Spectrometer (OMI-TOMS) data are -0.06%+3.32% (-0.44%:i:2.41%); between it and OMI Multi Axis Differential Optical Absorption Spec- troscopy (OMI-DOAS) data, the error is -0.34%--4.99% (-0.22%~4.85%). Mean absolute bias error values of OMI-TOMS data are less than those of OMI-DOAS. This means that total ozone of OMI-TOMS is closer to ground-based observation than that of OMI-DOAS. Comparison between direct observational total ozone of ground-based and integrated ozone from the ozone profile measured by ozone radiosonde shows that ozone amount calculated with the Solar Backscatter Ultraviolet (SBUV) method above balloon burst height is similar to corresponding Microwave Limb Sounder (MLS) data. Therefore, MLS data can be substituted with SBUV data to estimate ozone amount above that level. Mean bias error of the MLS ozone column is 2% compared with the ozonesonde column, with standard deviation within 9.5%. Comparison of different layers from ozone profiler and MLS data indi- cates that at the 215 hPa layer, the MLS ozone value is high, with relative deviation more than 20%. At the 100 hPa and 68 l^Pa layers, the MLS ozone value is also high. This deviation is mainly in spring, during Antarctic ozone hole appearance. In this period, at the height of severe ozone loss, relative deviation of MLS ozone values is especially large.展开更多
To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communic...To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.展开更多
Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented m...Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented mobility management method for IP/low earth orbit (LEO) satellite networks. By introducing the concept of ground station real-time coverage area, the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost. In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method, as is verified by the mathematical analysis and simulation, the proposed method could decrease the management cost. It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.展开更多
The Experimental Satellite on Electromagnetism Monitoring(ESEM) was proposed in 2003 and proved in 2013 after 10-years' scientific demonstration. The ESEM mission was proposed to be the first satellite of space-ba...The Experimental Satellite on Electromagnetism Monitoring(ESEM) was proposed in 2003 and proved in 2013 after 10-years' scientific demonstration. The ESEM mission was proposed to be the first satellite of space-based geophysical fields observation system in China with a lot of application prospects in earthquake science, geophysics, space sciences and so on. And coincide with the mission objectives, the satellite decides to use the Circular Sun Synchronous Orbit with an altitude of 507 km and descending node time at 14:00 LT. The payload assemble includes 8 instruments,Search-Coil Magnetometer, Electric Field Detector, High precision Magnetometer, GNSS occupation Receiver, Plasma Analyzer, Langmuir Probe, Energetic Particle Detector, and Three-frequency Transmitter. According to the planned schedule, the satellite is due to be launched in 2016–2017 and will be onboard operated for 5 years.展开更多
Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satell...Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, i.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the postearthquake phenomena.展开更多
As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the...As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, clue to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.展开更多
A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data tra...A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional展开更多
In this paper, the performance of various Pulse Position Modulation (PPM) schemes has been analysed for PIN and APD receivers in the presence of atmospheric turbulence. It is observed that the performance of the APD r...In this paper, the performance of various Pulse Position Modulation (PPM) schemes has been analysed for PIN and APD receivers in the presence of atmospheric turbulence. It is observed that the performance of the APD receiver is always better than that of the PIN receiver as expected. Among the various modulation schemes, the performance of Differential Amplitude PPM (DAPPM) scheme with more number of amplitude levels is better than that of the other schemes for the same single level peak amplitude. Further, the optimum gain of APD receiver does not change substantially for different modulation schemes and turbulent conditions.展开更多
Satellites with altitudes below 400 km are called super low altitude satellites(SLAS),often used to achieve responsive imaging tasks.Therefore,it is important for the manipulation of its ground track.Aiming at the pro...Satellites with altitudes below 400 km are called super low altitude satellites(SLAS),often used to achieve responsive imaging tasks.Therefore,it is important for the manipulation of its ground track.Aiming at the problem of ground track manipulation of SLAS,a control method based on tangential impulse thrust is proposed.First,the equation of the longitude difference between SLAS and the target point on the target latitude is derived based on Gauss’s variational equations.On this basis,the influence of the tangential impulse thrust on the ground track’s longitude is derived.Finally,the method for ground track manipulation of SLAS under the tangential impulse thrust is proposed.The simulation results verify the effective-ness of the method,after manipulation,the satellite can visit the target point and revisit it for multiple days.展开更多
基金supported by the State Grid Science and Technology Project (No. 5455HT160004)
文摘In order to meet the pressing demand for wide-area communication required by the Global Energy Interconnection(GEI),accelerating the construction of satellite-terrestrial Integra怕d networks that can achieve network extension and seamless global coverage has become the focus of power communication tech no logy development.In this study,we propose a satellite-terrestrial integrated network model that can support interconnection and interoperation on the IP layer between the satellite system and the怕rrestrial segment of the existing power communication system.First,the composition and function of the satellite-terrestrial collaborative network are explained.Then,the IP-based protocol stack is described,and a typical applicati on experime nt is con ducted to illustrate the particular process of this protocol stack.Fin ally,a use case of IP interconn ection that depends on GEO satellite communication is detailed.The experime ntal study has showed that the satellite-terrestrial collaborative network can efficiently support various IP applications for the GEI.
文摘INTRODUCTIONWith the coming of the 21st century, we are faced the problems of the environment, re-sources and population. The ocean is regarded as supplier of resources such as food, minerals,energy and space, and plays an important role in sustainable economic development. At thesame time the ocean has a very important effect on the worldwide environmental changes.
基金Independent Project of State Key Laboratory of Geo-information Engineering(SKLGIE2022-ZZ-01)The Youth Science Innovation Fund(No.2023-01)。
文摘GF-14 satellite is a new generation of sub-meter stereo surveying and mapping satellite in China,carrying dual-line array stereo mapping cameras to achieve 1∶10000 scale topographic mapping without Ground Control Points(GCPs).In fact,space-based high-precision mapping without GCPs is a challenging task that depends on the close cooperation of several payloads and links,of which on-orbit geometric calibration is one of the most critical links.In this paper,the on-orbit geometric calibration of the dual-line array cameras of GF-14 satellite was performed using the control points collected in the high-precision digital calibration field,and the calibration parameters of the dual-line array cameras were solved as a whole by alternate iterations of forward and backward intersection.On this basis,the location accuracy of the stereo images using the calibration parameters was preliminarily evaluated by using several test fields around the world.The evaluation result shows that the direct forward intersection accuracy of GF-14 satellite images without GCPs after on-orbit geometric calibration reaches 2.34 meters(RMS)in plane and 1.97 meters(RMS)in elevation.
基金National Natural Science Foundation of China(42175014,42205137)Open Research Fund of Institute of Meteorological Technology Innovation,Nanjing(BJG202202)+3 种基金Joint Research Project of Typhoon Research,Shanghai Typhoon Institute,China Meteorological Administration(TFJJ202209)Innovation Development Project of China Meteorological Administration(CXFZ2023P001)Open Project of KLME&CIC-FEMD(KLME202311)Jiangxi MDIA-ASI Fund。
文摘Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.
基金Supported by the Research Council of Shahid Beheshti University,G. C.
文摘Responsiveness is a challenge for space systems to sustain competitive advantage over al-ternate non-spaceborne technologies.For a satellite in its operational orbit,in-orbit responsiveness is defined as the capability of the satellite to respond to a given demand in a timely manner.In this paper,it is shown that Average Wait Time(AWT) to pick up user demand from ground segment is the ap-propriate metric to evaluate the effect of ground segment location on in-orbit responsiveness of Low Earth Orbit(LEO) sunsynchronous satellites.This metric depends on pattern of ground segment access to satellite and distribution of user demands in time domain.A mathematical model is presented to determine pattern of ground segment access to satellite and concept of cumulative distribution function is used to simulate distribution of user demands for markets with different total demand scenarios.Monte Carlo simulations are employed to take account of uncertainty in distribution and total volume of user demands.Sampling error and standard deviation are used to ensure validity of AWT metric obtained from Monte Carlo simulations.Incorporation of the proposed metric in the ground segment site location process results in more responsive satellite systems which,in turn,lead to greater customer satisfaction levels and attractiveness of spaceborne systems for different applications.Finally,simula-tion results for a case study are presented.
文摘Low Earth Orbits (LEO) satellites are used for public communication and for scientific purposes. These satellites provide opportunities for investigations for which alternative techniques are either difficult or impossible to apply. Ground stations have to be established in order to communicate with such satellites. Usually these satellites communicate with ground stations at S-band. The communication quality depends on the performance of the satellite ground station, in addition to that of satellite. The performance of the satellite ground stations is expressed through Figure of Merit. The aim of this paper is to analyze the rain attenuation impact on the performance of the respective ground station. Rain attenuation depends on geographical location where the satellite ground station is implemented. In order to compare this effect on satellite ground station performance, some cities of Europe are considered. Finally, the rain attenuation impact on the satellite ground station Figure of Merit for the hypothetical satellite ground station installed in Prishtina is analyzed.
文摘Juniperus excelsa subsp.polycarpos,(Persian juniper),is found in northeast Iran.In this study,the relationship between ground cover and vegetation indices have been investigated using remote sensing data for a Persian juniper forest.Multispectral data were analyzed based on the Advanced Visible and Near Infrared Radiometer type 2 and panchromatic data obtained by the Panchromatic Remote-sensing Instrument for Stereo Mapping sensors,both on board the advanced land observing satellite(ALOS).The ground cover was calculated using field survey data from 25 sub-sample plots and the vegetation indices were derived with 595 maximum filtering algorithm from ALOS data.R2 values were calculated for the normalized difference vegetation index(NDVI)and various soil-adjusted vegetation indices(SAVI)with soilbrightness-dependent correction factors equal to 1 and 0.5,a modified SAVI(MSAVI)and an optimized SAVI(OSAVI).R2 values for the NDVI,MSAVI,OSAVI,SAVI(1),and SAVI(0.5)were 0.566,0.545,0.619,0.603,and 0.607,respectively.Total ratio vegetation index for arid and semi-arid regions based on spectral wavelengths of ALOS data with an R2 value 0.633 was considered.Results of the current study will be useful for forest inventories in arid and semi-arid regions in addition to assisting decisionmaking for natural resource managers.
文摘Meteorological satellite ground application system resources are limited. Abnormal satellite missions often lead to hopple of system resources. In order to analyze the problem, this paper presents an anomaly analysis method for meteorological satellite ground system based on resource bottleneck. Through the CPU, memory and I/O, several types of resources in-depth were analyzed to find the bottleneck caused by the problem, thus providing recommendations for application optimization. Experimental analysis shows that the proposed method can reasonably analyze the resource bottleneck of CPU, memory and I/O, and draw a good conclusion. To solve the meteorological satellite application system application anomaly caused by the bottleneck of the problem, the application of optimization to a certain extent plays a positive role.
文摘Meteorological satellite ground application system carries a large number of applications. These applications deal with a variety of tasks. In order to classify these applications according to the resource consumption and improve the rational allocation of system resources, this paper introduces several application analysis algorithms. Firstly, the requirements are abstractly described, and then analyzed by hierarchical clustering algorithm. Finally, the benchmark analysis of resource consumption is given. Through the benchmark analysis of resource consumption, we will give a more accurate meteorological satellite ground application system.
基金supported by the Chinese Polar Environment Comprehensive Investigation and Assessment Programs (Grant no.JDZX20110019)
文摘We present validation between total ozone from satellite and ground-based observations of the Dobson and Brewer spectrometers and ozone radiosonde at Zhongshan and Syowa Antarctic research stations, for September 2004 to March 2009. Results show that mean bias error between Zhongshan (Syowa) and Ozone Monitor Instrument Total Ozone Mapping Spectrometer (OMI-TOMS) data are -0.06%+3.32% (-0.44%:i:2.41%); between it and OMI Multi Axis Differential Optical Absorption Spec- troscopy (OMI-DOAS) data, the error is -0.34%--4.99% (-0.22%~4.85%). Mean absolute bias error values of OMI-TOMS data are less than those of OMI-DOAS. This means that total ozone of OMI-TOMS is closer to ground-based observation than that of OMI-DOAS. Comparison between direct observational total ozone of ground-based and integrated ozone from the ozone profile measured by ozone radiosonde shows that ozone amount calculated with the Solar Backscatter Ultraviolet (SBUV) method above balloon burst height is similar to corresponding Microwave Limb Sounder (MLS) data. Therefore, MLS data can be substituted with SBUV data to estimate ozone amount above that level. Mean bias error of the MLS ozone column is 2% compared with the ozonesonde column, with standard deviation within 9.5%. Comparison of different layers from ozone profiler and MLS data indi- cates that at the 215 hPa layer, the MLS ozone value is high, with relative deviation more than 20%. At the 100 hPa and 68 l^Pa layers, the MLS ozone value is also high. This deviation is mainly in spring, during Antarctic ozone hole appearance. In this period, at the height of severe ozone loss, relative deviation of MLS ozone values is especially large.
基金supported by the National Natural Science Foundation of China(Grant Nos.61072067 and 61372076)the 111 Project(Grant No.B08038)+1 种基金the Fund from the State Key Laboratory of Integrated Services Networks(Grant No.ISN 1001004)the Fundamental Research Funds for the Central Universities(Grant Nos.K5051301059 and K5051201021)
文摘To realize practical wide-area quantum communication,a satellite-to-ground network with partially entangled states is developed in this paper.For efficiency and security reasons,the existing method of quantum communication in distributed wireless quantum networks with partially entangled states cannot be applied directly to the proposed quantum network.Based on this point,an efficient and secure quantum communication scheme with partially entangled states is presented.In our scheme,the source node performs teleportation only after an end-to-end entangled state has been established by entanglement swapping with partially entangled states.Thus,the security of quantum communication is guaranteed.The destination node recovers the transmitted quantum bit with the help of an auxiliary quantum bit and specially defined unitary matrices.Detailed calculations and simulation analyses show that the probability of successfully transferring a quantum bit in the presented scheme is high.In addition,the auxiliary quantum bit provides a heralded mechanism for successful communication.Based on the critical components that are presented in this article an efficient,secure,and practical wide-area quantum communication can be achieved.
基金National Natural Science Foundation of China (60532030)National Natural Science Foundation for Distinguished Young Scholars (60625102)
文摘Taking into chief consideration the features of aviation nodes in satellite networks, such as high moving speed, long communication distance, and high connection frequency, this article proposes an aviation-oriented mobility management method for IP/low earth orbit (LEO) satellite networks. By introducing the concept of ground station real-time coverage area, the proposed method uses ground-station-based IP addressing method and cell paging scheme to decrease the frequency of IP binding update requests as well as the paging cost. In comparison with the paging mobile IP (P-MIP) method and the handover-independent IP mobility management method, as is verified by the mathematical analysis and simulation, the proposed method could decrease the management cost. It also possesses better ability to support the aviation nodes because it is subjected to fewer influences from increased node speeds and newly coming connection rates.
文摘The Experimental Satellite on Electromagnetism Monitoring(ESEM) was proposed in 2003 and proved in 2013 after 10-years' scientific demonstration. The ESEM mission was proposed to be the first satellite of space-based geophysical fields observation system in China with a lot of application prospects in earthquake science, geophysics, space sciences and so on. And coincide with the mission objectives, the satellite decides to use the Circular Sun Synchronous Orbit with an altitude of 507 km and descending node time at 14:00 LT. The payload assemble includes 8 instruments,Search-Coil Magnetometer, Electric Field Detector, High precision Magnetometer, GNSS occupation Receiver, Plasma Analyzer, Langmuir Probe, Energetic Particle Detector, and Three-frequency Transmitter. According to the planned schedule, the satellite is due to be launched in 2016–2017 and will be onboard operated for 5 years.
基金support from the Key Project of Hainan Province Scientific and Technical Plan(grant No.06701)
文摘Based on an interpretation and study of the satellite remote-sensing images of FY-2C thermal infrared 1st wave band (10.3-11.3 μm) designed in China, the authors found that there existed obvious and isolated satellite thermal infrared anomalies before the 5.12 Wenchuan Ms 8.0 Earthquake. These anomalies had the following characteristics: (1) The precursor appeared rather early: on March 18, 2008, i.e., 55 days before the earthquake, thermal infrared anomalies began to occur; (2) The anomalies experienced quite many and complex evolutionary stages: the satellite thermal infrared anomalies might be divided into five stages, whose manifestations were somewhat different from each other. The existence of so many anomaly stages was probably observed for the first time in numerous cases of satellite thermal infrared research on earthquakes; (3) Each stage lasted quite a long time, with the longest one spanning 13 days; (4) An evident geothermal anomaly gradient was distributed along the Longmen seismic fracture zone, and such a phenomenon might also be discovered for the first time in satellite thermal infrared earthquake research. This discovery is therefore of great guiding and instructive significance in the study of the earthquake occurrence itself and the trend of the postearthquake phenomena.
文摘As a result of the exponential growing rate of worldwide Internet usage, satellite systems are required to support broadband Internet applications. The transmission control protocol (TCP) which is widely used in the Internet, performs very well on wired networks. However, in the case of satellite channels, clue to the delay and transmission errors, TCP performance degrades significantly and bandwidth of satellite links can not be fully utilized. To improve the TCP performance, a new idea of placing a TCP spoofing proxy in the satellite is considered. A Novel Satellite Transport Protocol (NSTP) which takes advantage of the special properties of the satellite channel is also proposed. By using simulation, as compared with traditional TCPs, the on-board spoofing proxy integrated with the special transport protocol can significantly enhance throughput performance on the high BER satellite link, the time needed to transfer files and the bandwidth used in reverse path are sharply reduced.
文摘A hybrid scheduling algorithm based on genetic algorithm is proposed in this paper for reconnaissance satellite data transmission.At first,based on description of satellite data transmission request,satellite data transmission task model and satellite data transmission scheduling problem model are established.Secondly,the conflicts in scheduling are discussed.According to the meaning of possible conflict,the method to divide possible conflict task set is given.Thirdly,a hybrid algorithm which consists of genetic algorithm and heuristic information is presented.The heuristic information comes from two concepts,conflict degree and conflict number.Finally,an example shows the algorithm's feasibility and performance better than other traditional
文摘In this paper, the performance of various Pulse Position Modulation (PPM) schemes has been analysed for PIN and APD receivers in the presence of atmospheric turbulence. It is observed that the performance of the APD receiver is always better than that of the PIN receiver as expected. Among the various modulation schemes, the performance of Differential Amplitude PPM (DAPPM) scheme with more number of amplitude levels is better than that of the other schemes for the same single level peak amplitude. Further, the optimum gain of APD receiver does not change substantially for different modulation schemes and turbulent conditions.
基金supported by the National Natural Science Foundation of China(11972130)the Heilongjiang Touyan Team Program(11972130).
文摘Satellites with altitudes below 400 km are called super low altitude satellites(SLAS),often used to achieve responsive imaging tasks.Therefore,it is important for the manipulation of its ground track.Aiming at the problem of ground track manipulation of SLAS,a control method based on tangential impulse thrust is proposed.First,the equation of the longitude difference between SLAS and the target point on the target latitude is derived based on Gauss’s variational equations.On this basis,the influence of the tangential impulse thrust on the ground track’s longitude is derived.Finally,the method for ground track manipulation of SLAS under the tangential impulse thrust is proposed.The simulation results verify the effective-ness of the method,after manipulation,the satellite can visit the target point and revisit it for multiple days.