Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the...Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.展开更多
Based on lightning location data of lightning monitoring network in Guizhou Province in recent eight years,the effective detection radius of a station and the effective detection range of lightning monitoring network ...Based on lightning location data of lightning monitoring network in Guizhou Province in recent eight years,the effective detection radius of a station and the effective detection range of lightning monitoring network in Guizhou Province were analyzed. The results show that the effective detection radius of a lightning monitoring sub-station in Guizhou Province is 160 km; some counties in the southwest,northwest and northeast of Guizhou were not detected. To improve the detector efficiency of lightning monitoring network in Guizhou Province,it is suggested that nine sub-stations should be built in Weining,Shuicheng,Qinglong,Pingtang,Rongjiang,Yuping,Songtao,Tongren and Renhuai,so that the effective detection efficiency will reach more than 95%.展开更多
Visualizing lightning location data is necessary in analyzing and researching lightning activity patterns.This article uses C#and the cross-platform.NET framework to develop a lightning location data analysis class li...Visualizing lightning location data is necessary in analyzing and researching lightning activity patterns.This article uses C#and the cross-platform.NET framework to develop a lightning location data analysis class library and the data-driven client to help lightning researchers improve work efficiency by avoiding repeated wheel invention.Lightning Location System Data Analyzer(LLSDA)is a suite of software tools that includes a.NET class library for software developers and a desktop application for end users.It supports a wide range of lightning location data formats,such as the University of Washington Global Lightning Location System(WWLLN)and Beijing Huayun Dongfang ADTD Lightning Location System data format,and maintains scalability.The class library can easily read,parse,and analyze lightning location data,and combined with third-party frameworks can realize grid analysis.The desktop application can be combined with MeteoInfo(a GIS open-source project)for secondary development.展开更多
In recent years,along with the rapid expansion of power grids,the increasing complication of grid structures,and the development of smart grids and energy technologies,the lightning protection of power grids becomes i...In recent years,along with the rapid expansion of power grids,the increasing complication of grid structures,and the development of smart grids and energy technologies,the lightning protection of power grids becomes increasingly prominent.Power grids of China have acquired significant achievements on lightning protection technologies,which are reviewed in this paper.A technical route of lightning protection is introduced in detail; it allows us to find problems through detection and measurement of lightning,to analyze problems through evaluation and simulation of lightning,to solve problems through lightning protection measures,and to prevent problems through hazard risk warning of lightning.Following the route,the technical breakthroughs of these four aspects in China are presented,including the chinese lightning detection network(CLDN),natural lightning observations,lightning faults detection at transmission lines,lightning current measurements,progresses in lightning distribution maps,lightning fault replays,lightning hazard risk evaluations,and lightning simulated experiments,as well as novel lightning protection measures.The practical devices and systems corresponding to the technologies mentioned above are also introduced and discussed.Due to the progress of lightning protection technologies in recent years,despite the rapidly growing length of transmission lines in China,the lightning accident rate is controlled at a certain level.展开更多
Using the data of the Lightning Location System( LLS) over Hubei Province,through the analysis of the distribution characteristics of CG( Cloud-to-Ground) flash density in 2015,it was found that the layout of the dete...Using the data of the Lightning Location System( LLS) over Hubei Province,through the analysis of the distribution characteristics of CG( Cloud-to-Ground) flash density in 2015,it was found that the layout of the detection station had influence on the spatial distribution of lightning.Grid CG flash density data were used to characterize the spatial distribution of the CG flash,and station distance factor was used to characterize the detection station layout. The result showed that there existed negative correlation between density and factor,significant correlation between the density component and the factor for the lightning current amplitude of 5 to 30 kA,and insignificant correlation between >30 kA of density component and factor. So it is necessary to revise the density to eliminate the influence of the station layout. On the basis of the linear regression method and its residual theory,the revision model of the grid CG flash density and the statistical model of relative detection efficiency were established. The result consistency of segment and non-segmented revision of the density was verified. Through the contrastive analysis of theoretical detection efficiency and relative detection efficiency,the feasibility for revision method of CG flash density and the statistical method of relative detection efficiency was also verified.展开更多
Lightning is a typical example of an instantaneous random point source target. It has close connection with severe convective phenomena such as a thunderstorm, whose distribution, variation, position and forecasting c...Lightning is a typical example of an instantaneous random point source target. It has close connection with severe convective phenomena such as a thunderstorm, whose distribution, variation, position and forecasting can be acquired through lightning observation. In this paper, we discuss the way to achieve instantaneous lightning signal intensification and detection from geostationary orbit by using the differences between the lightning signal and the slowly changing background noise such as that of cloud, land and ocean, combining three methods, spectral filtering, spatial filtering and background noise, enabling removal between frames. After six months of operation in orbit, lightning within the coverage of the Geostationary Lightning Imager was effectively detected, strongly supporting the case for shorttime and real-time early warning, forecasting and tracking of severe convective phenomena in China.展开更多
为动态实时掌握企业防雷安装信息,提高宜春市气象部门防雷检测的服务效率和服务质量,设计了宜春市防雷检测服务系统。该系统基于微软公司推出的新一代脚本语言Active Server Page.NET(ASP.NET),整体架构采用B/S形式的两层架构。系统能...为动态实时掌握企业防雷安装信息,提高宜春市气象部门防雷检测的服务效率和服务质量,设计了宜春市防雷检测服务系统。该系统基于微软公司推出的新一代脚本语言Active Server Page.NET(ASP.NET),整体架构采用B/S形式的两层架构。系统能够显示企业的防雷工程信息,分析出防雷工程不合格的设计,及时给出指导意见;按照检测情况,系统能够跟踪防雷检测报告的进展情况,方便查阅和及时获取报告。展开更多
为了提高氧化锌避雷器的故障检测精度,文章利用收敛因子非线性变化和莱维飞行策略对灰狼(Grey Wolf Optimization, GWO)算法进行改进,得到收敛性能更好的改进灰狼(Improved Grey Wolf Optimization, IGWO)算法,再采用IGWO算法对支持向量...为了提高氧化锌避雷器的故障检测精度,文章利用收敛因子非线性变化和莱维飞行策略对灰狼(Grey Wolf Optimization, GWO)算法进行改进,得到收敛性能更好的改进灰狼(Improved Grey Wolf Optimization, IGWO)算法,再采用IGWO算法对支持向量机(Support Vector Machine, SVM)的惩罚系数和核带宽进行优化,建立基于IGWO-SVM的避雷器故障检测模型。利用氧化锌避雷器监测数据进行故障检测实例分析,将IGWO-SVM模型的故障检测结果与现有避雷器故障检测模型的检测结果对比,结果表明,IGWO-SVM模型的检测精度更高,验证了该模型在氧化锌避雷器故障检测方面的优越性。展开更多
基金National Natural Science Foundation of China(42175014,42205137)Open Research Fund of Institute of Meteorological Technology Innovation,Nanjing(BJG202202)+3 种基金Joint Research Project of Typhoon Research,Shanghai Typhoon Institute,China Meteorological Administration(TFJJ202209)Innovation Development Project of China Meteorological Administration(CXFZ2023P001)Open Project of KLME&CIC-FEMD(KLME202311)Jiangxi MDIA-ASI Fund。
文摘Based on the lightning observation data from the Fengyun-4A(FY-4A)Lightning Mapping Imager(FY-4A/LMI)and the Lightning Imaging Sensor(LIS)on the International Space Station(ISS),we extract the“event”type data as the lightning detection results.These observations are then compared with the cloud-to-ground(CG)lightning observation data from the China Meteorological Administration.This study focuses on the characteristics of lightning activity in Southeast China,primarily in Jiangxi Province and its adjacent areas,from April to September,2017–2022.In addition,with the fifth-generation European Centre for Medium-Range Weather Forecasts reanalysis data,we further delved into the potential factors influencing the distribution and variations in lightning activity and their primary related factors.Our findings indicate that the lightning frequency and density of the FY-4A/LMI,ISS-LIS and CG data are higher in southern and central Jiangxi,central Fujian Province,and western and central Guangdong Province,while they tend to be lower in eastern Hunan Province.In general,the high-value areas of lightning density for the FY-4A/LMI are located in inland mountainous areas.The lower the latitude is,the higher the CG lightning density is.High-value areas of the CG lightning density are more likely to be located in eastern Fujian and southeastern Zhejiang Province.However,the high-value areas of lightning density for the ISS-LIS are more dispersed,with a scattered distribution in inland mountainous areas and along the coast of eastern Fujian.Thus,the mountainous terrain is closely related to the high-value areas of the lightning density.The locations of the high-value areas of the lightning density for the FY-4A/LMI correspond well with those for the CG observations,and the seasonal variations are also consistent.In contrast,the distribution of the high-value areas of the lightning density for the ISS-LIS is more dispersed.The positions of the peak frequency of the FY-4A/LMI lightning and CG lightning contrast with local altitudes,primarily located at lower altitudes or near mountainsides.K-index and convective available potential energy(CAPE)can better reflect the local boundary layer conditions,where the lightning density is higher and lightning seasonal variations are apparent.There are strong correlations in the annual variations between the dew-point temperature(Td)and CG lightning frequency,and the monthly variations of the dew-point temperature and CAPE are also strongly correlated with monthly variations of CG lightning,while they are weakly correlated with the lightning frequency for the FY-4A/LMI and ISS-LIS.This result reflects that the CAPE shows a remarkable effect on the CG lightning frequency during seasonal transitions.
基金Supported by the Foundation for Young Scholars of Guizhou Meteorological Bureau,China(QN[2012]13)
文摘Based on lightning location data of lightning monitoring network in Guizhou Province in recent eight years,the effective detection radius of a station and the effective detection range of lightning monitoring network in Guizhou Province were analyzed. The results show that the effective detection radius of a lightning monitoring sub-station in Guizhou Province is 160 km; some counties in the southwest,northwest and northeast of Guizhou were not detected. To improve the detector efficiency of lightning monitoring network in Guizhou Province,it is suggested that nine sub-stations should be built in Weining,Shuicheng,Qinglong,Pingtang,Rongjiang,Yuping,Songtao,Tongren and Renhuai,so that the effective detection efficiency will reach more than 95%.
文摘Visualizing lightning location data is necessary in analyzing and researching lightning activity patterns.This article uses C#and the cross-platform.NET framework to develop a lightning location data analysis class library and the data-driven client to help lightning researchers improve work efficiency by avoiding repeated wheel invention.Lightning Location System Data Analyzer(LLSDA)is a suite of software tools that includes a.NET class library for software developers and a desktop application for end users.It supports a wide range of lightning location data formats,such as the University of Washington Global Lightning Location System(WWLLN)and Beijing Huayun Dongfang ADTD Lightning Location System data format,and maintains scalability.The class library can easily read,parse,and analyze lightning location data,and combined with third-party frameworks can realize grid analysis.The desktop application can be combined with MeteoInfo(a GIS open-source project)for secondary development.
基金Project supported by National Basic Research Program of China (973 Program) (2011CB209400), National Fligh-tech Research and Developmerit Program of China (863 Program (2011AA040405), National Natural Science Foundation of China (Ul134106), 3551 Optics Valley Personal Plan of Wuhan East Lake High-tech Development Zone, Science and Technology Program of SGCC(SG[2009], SG[2013]).
文摘In recent years,along with the rapid expansion of power grids,the increasing complication of grid structures,and the development of smart grids and energy technologies,the lightning protection of power grids becomes increasingly prominent.Power grids of China have acquired significant achievements on lightning protection technologies,which are reviewed in this paper.A technical route of lightning protection is introduced in detail; it allows us to find problems through detection and measurement of lightning,to analyze problems through evaluation and simulation of lightning,to solve problems through lightning protection measures,and to prevent problems through hazard risk warning of lightning.Following the route,the technical breakthroughs of these four aspects in China are presented,including the chinese lightning detection network(CLDN),natural lightning observations,lightning faults detection at transmission lines,lightning current measurements,progresses in lightning distribution maps,lightning fault replays,lightning hazard risk evaluations,and lightning simulated experiments,as well as novel lightning protection measures.The practical devices and systems corresponding to the technologies mentioned above are also introduced and discussed.Due to the progress of lightning protection technologies in recent years,despite the rapidly growing length of transmission lines in China,the lightning accident rate is controlled at a certain level.
文摘Using the data of the Lightning Location System( LLS) over Hubei Province,through the analysis of the distribution characteristics of CG( Cloud-to-Ground) flash density in 2015,it was found that the layout of the detection station had influence on the spatial distribution of lightning.Grid CG flash density data were used to characterize the spatial distribution of the CG flash,and station distance factor was used to characterize the detection station layout. The result showed that there existed negative correlation between density and factor,significant correlation between the density component and the factor for the lightning current amplitude of 5 to 30 kA,and insignificant correlation between >30 kA of density component and factor. So it is necessary to revise the density to eliminate the influence of the station layout. On the basis of the linear regression method and its residual theory,the revision model of the grid CG flash density and the statistical model of relative detection efficiency were established. The result consistency of segment and non-segmented revision of the density was verified. Through the contrastive analysis of theoretical detection efficiency and relative detection efficiency,the feasibility for revision method of CG flash density and the statistical method of relative detection efficiency was also verified.
文摘Lightning is a typical example of an instantaneous random point source target. It has close connection with severe convective phenomena such as a thunderstorm, whose distribution, variation, position and forecasting can be acquired through lightning observation. In this paper, we discuss the way to achieve instantaneous lightning signal intensification and detection from geostationary orbit by using the differences between the lightning signal and the slowly changing background noise such as that of cloud, land and ocean, combining three methods, spectral filtering, spatial filtering and background noise, enabling removal between frames. After six months of operation in orbit, lightning within the coverage of the Geostationary Lightning Imager was effectively detected, strongly supporting the case for shorttime and real-time early warning, forecasting and tracking of severe convective phenomena in China.
文摘为动态实时掌握企业防雷安装信息,提高宜春市气象部门防雷检测的服务效率和服务质量,设计了宜春市防雷检测服务系统。该系统基于微软公司推出的新一代脚本语言Active Server Page.NET(ASP.NET),整体架构采用B/S形式的两层架构。系统能够显示企业的防雷工程信息,分析出防雷工程不合格的设计,及时给出指导意见;按照检测情况,系统能够跟踪防雷检测报告的进展情况,方便查阅和及时获取报告。