Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes...Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes.This paper evaluated the daily performance of four precipitation products(MSWEP,ERA5,PERSIANN,and TRMM)for seven regions of the Chinese mainland,using observations from 2462 ground stations across the country as a benchmark.We used four statistical and four classification indicators to describe their spatial and temporal accuracy,and capability to detect precipitation events while analyzing their applicability.The results show that according to the precipitation char-acteristics and accuracy of different types of precipitation products over the Chinese mainland,MSWEP was the most suitable product over the Chinese mainland,having the lowest root mean square error and mean absolute error,along with the highest coefficient of determination.It was followed by TRMM and ERA5,whereas PERSIANN lagged behind in terms of performance.In terms of different regions,MSWEP still performed well,especially in North China and East China.The accuracy of the four precipitation products was relatively low in the summer months,and they all overestimated in the northwest region.In other months,MSWEP and TRMM were better than PERSIANN and ERA5.The four precipitation products had good detection performance over the Chinese mainland,with probability of detection above 0.5.However,with the increase of precipitation threshold,the detection capability of the four products decreased,and MSWEP and ERA5 had good detection capability for moderate rain.TRMM’s detection capability for heavy rain and rainstorms was better than that of the other three products,and PERSIANN’s detection capability for moderate rain,heavy rain and rainstorms was relatively poor,with a large deviation.展开更多
Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relie...Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.展开更多
Global reanalysis precipitation products could provide valuable meteorological information for flow forecasting in poorly gauged areas, helping to overcome a long-standing challenge in the field. But not all data sour...Global reanalysis precipitation products could provide valuable meteorological information for flow forecasting in poorly gauged areas, helping to overcome a long-standing challenge in the field. But not all data sources are suitable for all regions or perform the same way in hydrological modeling, so it is essential to test the suitability of precipitation products before applying them. In this study, five widely used global high-resolution precipitation products—Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources(APHRODITE), National Centers for Environmental Prediction Climate Forecast System Reanalysis(NCEP-CFSR), Climate Hazards Group InfraRed Precipitation with Station Data(CHIRPS), China Gauge-based Daily Precipitation Analysis developed by China Meteorological Administration(CMA) and Agricultural Model Intercomparison and Improvement Project based on the NASA Modern-Era Retrospective Analysis for Research and Applications(AgMERRA)—were evaluated using statistical methods and a hydrological approach for their suitability for the Lancang River Basin. The results indicated that APHRODITE, CMA, AgMERRA and CHIRPS were more accurate precipitation indicators than NCEP-CFSR in terms of the multiyear average and seasonal spatial distribution pattern, all of the CHIRPS, Ag MERRA and APHRODITE perform better than CMA and NCEP-CFSR at the small, medium and high precipitation intensities ranges in subbasin11 and sunbabsin46. All five products performed better in subbasin46(a low-altitude region) than in subbasin11(a high-altitude region) on the daily and monthly scales. In addition to NCEP-CFSR, the other four products all presented encouraging potential for streamflow simulation at daily(Yunjinghong) and monthly(Yunjinghong, Jiuzhou and Gajiu) scale. Hydrological simulations forced with APHRODITE were the best of the five for the Yunjinghong station in capturing daily and monthly measured streamflow. Except for NCEP-CFSR, all products were very good for hydrological simulations for the Gajiu and Jiuzhou stations.展开更多
Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM) standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC) morphing techn...Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM) standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC) morphing technique precipitation product (CMORPH), were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and -5% biases for 3B42V6, 3B42RT, and CMORPH, respectively). Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.展开更多
Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about t...Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.展开更多
Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It ...Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti microalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.展开更多
The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are sti...The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are still controversial. We selected 717 grassland sites with ANPP and mean annual precipitation(MAP) data from 40 publications to characterize the relationships ANPP–MAP and PUE–MAP across different grassland types. The MAP and ANPP showed large variations across all grassland types, ranging from 69 to 2335 mm and 4.3 to 1706 g m^(-2), respectively. The global maximum PUE ranged from 0.19 to 1.49 g m^(-2) mm^(-1) with a unimodal pattern. Analysis using the sigmoid function explained the ANPP–MAP relationship best at the global scale. The gradient of the ANPP–MAP graph was small for arid and semi-arid sites(MAP <400 mm). This study improves our understanding of the relationship between ANPP and MAP across dry grassland ecosystems. It provides new perspectives on the prediction and modeling of variations in the ANPP for different grassland types along precipitation gradients.展开更多
Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating a...Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.展开更多
High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrologi...High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrological disaster prevention and mitigation.In this study,high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System(CMPAS),and four CMPAS products with different spatial and temporal resolution and different data sources are compared,to derive the applicability of CMPAS.Results show that all the CMPAS products show high accuracy in the Sichuan Basin,followed by Panxi Area and the western Sichuan Plateau.The errors of the four products all rise with the increase in precipitation.CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter.Overall,the applicability of these fused data in the Sichuan Basin is quite good.Due to the lack of observations and the influence of the terrain and meteorological conditions,the evaluation of CMPAS in the plateau area needs further analysis.展开更多
Bangladesh is a flood prone country where precipitation amount is irregular but sometimes extreme. Among the climatic parameters, precipitation is assumed as one of the vital indicators of ongoing climate change scena...Bangladesh is a flood prone country where precipitation amount is irregular but sometimes extreme. Among the climatic parameters, precipitation is assumed as one of the vital indicators of ongoing climate change scenarios and is equally important for tea production. In this study, 7 and 9 tea estates of Sylhet and Sreemangal were selected to analyze tea production in relation to extreme precipitation intensity. Precipitation patterns namely 90<sup>th</sup>, 95<sup>th</sup> and 99<sup>th</sup> percentile were analyzed to find out the contribution of extreme precipitation and tea production. To attain the objectives, 3 hourly, daily, monthly, and total precipitation data from 1971 to 2014 were collected from Bangladesh Meteorological Department and Bangladesh Agricultural Development Board. Tea production data were collected from Bangladesh Tea Board, Sylhet. To find out extreme level of precipitation 90<sup>th</sup>, 95<sup>th</sup>, 99<sup>th</sup> percentile precipitation days were identified and analyzed. The analyses show that 1974, 1976, 1977, 1993, 1988, 1990, 2000, 2001, 2002, and 2004 were extreme precipitation years. The average precipitation of Sylhet was higher in 2000 than in 1992 and 2014. In Sreemangal, extreme precipitation was higher in 2014 than in 1992 and 2000. For both the regions, tea production was higher in 2000 and lower in 1992 and 2014. The result shows that more extreme precipitation was responsible for higher amount of tea production. The results suggest that extreme precipitation intensity was one of the responsible factors for higher amount of tea production in Sylhet and Sreemangal.展开更多
Asphaltenes are complex molecular entities, which together with resins, aromatic hydrocarbons and saturates forms the crude oil. Asphaltenes and resins are in the thermodynamic equilibrium at static reservoir conditio...Asphaltenes are complex molecular entities, which together with resins, aromatic hydrocarbons and saturates forms the crude oil. Asphaltenes and resins are in the thermodynamic equilibrium at static reservoir condition. However, asphaltene can precipitate due to changes in thermodynamic condition. Asphaltene deposition in production tubings has been an outstanding problem with wide economic impact on the oil industry. Meanwhile, the use of real-time tools to monitor depositions along the well is of great difficulty. In this work, the asphaltene precipitation region in a single phase flow wellbore is predicted for an oil well of the Iranian oil field. Then, asphaltene deposition thickness along the well is predicted for three time intervals. The simulation results indicated that asphaltene thickness exceeded more than 50% of tubing radius;therefore, a reduction in flow rate, an increase in pressure drop and tubing blockage are expected. Moreover, it is shown the deposits thickness along the wellbore has approximately a skew normal distribution shape, which could be the result of increases in velocity and excess pressure drop.展开更多
Satellite precipitation products are widely used in different domain, in area where there is a lack in observation. These have different spatio-temporal resolutions consequently resulting in different precipitation am...Satellite precipitation products are widely used in different domain, in area where there is a lack in observation. These have different spatio-temporal resolutions consequently resulting in different precipitation amounts depending on the product. The present study validates three satellite products, namely the Climate Hazard group Infrared Precipitation with Stations (CHIRPS), the Climate Research Unit (CRU) and the Global Precipitation Climatology Project (GPCP) over Bandama and Mono river basins for 1981-2005 and 1981-2016 respectively by comparing them to the observation precipitation of the basin. The available studies are focused on the regional scale but not on a watershed scale for hydrological studies. The analysis reveals that all the products are strongly correlated to each other as well as to the observed data at basin level. The Lamb coefficient test shows that most all the chosen basin namely Bandama and Mono presents the same climatic indices. All the products present the same variability and trend as the observation at basins scale. By comparing those products to observation, CHIRPS product following by GPCP give the lowest mean absolute error (MAE) at annual and seasonal time scales while CHIRPS is followed by CRU at monthly scale. Overall, all products overestimate the precipitation at Bandama basin while they underestimate it over Mono river basin. The comparison over 1981-2017 period of the total annual precipitation increasing southern ward (from Sahel to the coastal zone) for all the three studied products which varies from 300 mm to 2400 mm/year. All the three products are not significantly different from one another and they all highlight the same areas of hotspot rainfall in the region. The same conclusion is made at monthly and seasonal scales. Therefore, any of these products especially CHIRPS can be used for study in this region due to its lowest bias and MAE.展开更多
Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 4...Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe, temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r^2 = 0.61, P 〈 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual preeipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r^2 = 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r^2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r^2 = 0.51, P 〈 0.01); for the alpine meadow, the key variable was last September-May precipitation (r^2 = 0.29, P 〈 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.展开更多
The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscop...The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.展开更多
Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall station...Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.展开更多
Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinemen...Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP.展开更多
The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removalcrystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitationis con...The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removalcrystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitationis considered in which secondary nucleation occurs simultaneously with primary nucleation. The determinantequations for the existence of multiple steady states are developed and the multiplicity boundaries dependent on thephysical and kinetic properties and operational parameters of the process are obtained by resolving these determinantequations. The number of steady states in the precipitator for various multiplicity regions is determined and thelinear stability of these steady states is analyzed by using the Routh criterion.展开更多
Precipitation is a key manufacturing unit during the immunoglobulin G(IgG)production,which guarantees the quality of the final product.Ethanol is usually used to purify IgG during the precipitation process,so it is im...Precipitation is a key manufacturing unit during the immunoglobulin G(IgG)production,which guarantees the quality of the final product.Ethanol is usually used to purify IgG during the precipitation process,so it is important to monitor the ethanol concentration online.Near-infrared(NIR)spectroscopy is a powerful process analytical technology(PAT)which has been proved to be feasible to determine the ethanol concentration during the precipitation process.However,the NIR model is usually established based on the specific process,so a universal model is needed.And the clarity degree of solution will affect the quality of the spectra.Therefore,in this study an integrated NIR system was introduced to establish a universal NIR model which could predict the ethanol concentration online and determine the end-point of the whole process.First,a spectra acquisition device was designed and established in order to get high-quality NIR spectra.Then,a simple prepared ethanol NIR model was constructed to predict the actual manufacturing process.Finally,the end-point was determined to stop the peristaltic pump when the ethanol concentration reached 20%.The results showed that the spectra quality was good,model prediction was accurate,and process monitoring was accurate.In conclusion,all results indicated that the integrated NIR system could be used to monitor the biopharmaceutical process to help us understand the pharmaceutical process.展开更多
The lattice Boltzmann method(LBM)is used to simulate the growth of a solid-deposit on the walls of a circular tube resulting from a gas-to-solid reaction and precipitation process.This process is of particular interes...The lattice Boltzmann method(LBM)is used to simulate the growth of a solid-deposit on the walls of a circular tube resulting from a gas-to-solid reaction and precipitation process.This process is of particular interest for the design of reactors for the production of hydrogen by the heterogeneous hydrolysis of steam with Zn vapor in the Zn/ZnO thermochemical cycle.The solid deposit of ZnO product on the tube wall evolves in time according to the temporally-and axially-varying convective-diffusive transport and reaction of Zn vapor with steam on the solid surface.The LBM is wellsuited to solving problems with coupled flow,heat and mass transfer in a time-evolving domain.Here,a D2Q9 axisymmetric multiple-relaxation-time(MRT)lattice Boltzmann scheme is used to simulate incompressible fluid transport while a D2Q5 axisymmetric MRT lattice Boltzmann scheme is used to simulate the convective-diffusive transport of Zn vapor.The model is first validated against several analytical solutions,followed by a parametric study to understand the effect of Reynolds,Schmidt,and Damk?hler numbers on the time evolution of the ZnO deposition profile along the tube axis.The axial location of the fastest deposition is found to increase with increasing Peclet number,and decrease with increasing Damk?hler number,with no independent effect from the Schmidt number.When the reaction kinetics are assumed to increase along the tube axis due to nonisothermal tube wall temperature,a second peak in the deposition profile can be observed for sufficiently low values of Da/Pe.展开更多
Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, res...Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, respectively, and the corresponding precipitation was recorded as well. Moreover, plant dry matter accumulation was counted at the end of our entire experiment. The results show that precipitation fully demonstrates its negative effect on plant photosynthesis under the condition of without water shortage. Although it has not been proved, leaf shape seems to be associated with this effect. Broad-leaved species are less influenced than coniferous and lanceleaf species no matter on the length of variation time or changes in variation values. The different situation among three broad-leaved species seems to illustrate that the effect is also related to the size of single leaf area. The correlation between precipitation and photosynthetic rate variation is analogous to the relationship between precipitation and splash erosion, and in the view of the relationship between plant photosynthetic characteristics and dry mass accumulation, it can be thought that it can reflect the negative impact of precipitation on plant growth by making use of splash erosion. Therefore, a section was added in the traditional plant biomass estimation algorithms by using eco-physiological models, and this was proved to enhance the accuracy of traditional estimation from preliminary verifications.展开更多
基金173 National Basic Research Program of China(2020-JCJQ-ZD-087-01)。
文摘Satellite-based and reanalysis precipitation products provide valuable information for various applications.However,their performance varies widely across regions due to different data sources and production processes.This paper evaluated the daily performance of four precipitation products(MSWEP,ERA5,PERSIANN,and TRMM)for seven regions of the Chinese mainland,using observations from 2462 ground stations across the country as a benchmark.We used four statistical and four classification indicators to describe their spatial and temporal accuracy,and capability to detect precipitation events while analyzing their applicability.The results show that according to the precipitation char-acteristics and accuracy of different types of precipitation products over the Chinese mainland,MSWEP was the most suitable product over the Chinese mainland,having the lowest root mean square error and mean absolute error,along with the highest coefficient of determination.It was followed by TRMM and ERA5,whereas PERSIANN lagged behind in terms of performance.In terms of different regions,MSWEP still performed well,especially in North China and East China.The accuracy of the four precipitation products was relatively low in the summer months,and they all overestimated in the northwest region.In other months,MSWEP and TRMM were better than PERSIANN and ERA5.The four precipitation products had good detection performance over the Chinese mainland,with probability of detection above 0.5.However,with the increase of precipitation threshold,the detection capability of the four products decreased,and MSWEP and ERA5 had good detection capability for moderate rain.TRMM’s detection capability for heavy rain and rainstorms was better than that of the other three products,and PERSIANN’s detection capability for moderate rain,heavy rain and rainstorms was relatively poor,with a large deviation.
基金supported by the National Key Research and Development Program of China(2023YFC3206300)the National Natural Science Foundation of China(42477529,42371145,42261026)+2 种基金the China-Pakistan Joint Program of the Chinese Academy of Sciences(046GJHZ2023069MI)the Gansu Provincial Science and Technology Program(22ZD6FA005)the National Cryosphere Desert Data Center(E01Z790201).
文摘Precipitation plays a crucial role in the water cycle of Northwest China.Obtaining accurate precipitation data is crucial for regional water resource management,hydrological forecasting,flood control and drought relief.Currently,the applicability of multi-source precipitation products for long time series in Northwest China has not been thoroughly evaluated.In this study,precipitation data from 183 meteorological stations in Northwest China from 1979 to 2020 were selected to assess the regional applicability of four precipitation products(the fifth generation of European Centre for Medium-Range Weather Forecasts(ECMWF)atmospheric reanalysis of the global climate(ERA5),Global Precipitation Climatology Centre(GPCC),Climatic Research Unit gridded Time Series Version 4.07(CRU TS v4.07,hereafter CRU),and Tropical Rainfall Measuring Mission(TRMM))based on the following statistical indicators:correlation coefficient,root mean square error(RMSE),relative bias(RB),mean absolute error(MAE),probability of detection(POD),false alarm ratio(FAR),and equitable threat score(ETS).The results showed that precipitation in Northwest China was generally high in the east and low in the west,and exhibited an increasing trend from 1979 to 2020.Compared with the station observations,ERA5 showed a larger spatial distribution difference than the other products.The overall overestimation of multi-year average precipitation was approximately 200.00 mm and the degree of overestimation increased with increasing precipitation intensity.The multi-year average precipitation of GPCC and CRU was relatively close to that of station observations.The trend of annual precipitation of TRMM was overestimated in high-altitude regions and the eastern part of Lanzhou with more precipitation.At the monthly scale,GPCC performed well but underestimated precipitation in the Tarim Basin(RB=-4.11%),while ERA5 and TRMM exhibited poor accuracy in high-altitude regions.ERA5 had a large bias(RB≥120.00%)in winter months and a strong dispersion(RMSE≥35.00 mm)in summer months.TRMM showed a relatively low correlation with station observations in winter months(correlation coefficients≤0.70).The capture performance analysis showed that ERA5,GPCC,and TRMM had lower POD and ETS values and higher FAR values in Northwest China as the precipitation intensity increased.ERA5 showed a high capture performance for small precipitation events and a slower decreasing trend of POD as the precipitation intensity increased.GPCC had the lowest FAR values.TRMM was statistically ineffective for predicting the occurrence of daily precipitation events.The findings provide a reference for data users to select appropriate datasets in Northwest China and for data developers to develop new precipitation products in the future.
基金National Key Research and Development Programs of China(No.2016YFA0601601,2016YFA0601501)National Natural Science Foundation of China(No.41330854,51779144,51779146)
文摘Global reanalysis precipitation products could provide valuable meteorological information for flow forecasting in poorly gauged areas, helping to overcome a long-standing challenge in the field. But not all data sources are suitable for all regions or perform the same way in hydrological modeling, so it is essential to test the suitability of precipitation products before applying them. In this study, five widely used global high-resolution precipitation products—Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation of Water Resources(APHRODITE), National Centers for Environmental Prediction Climate Forecast System Reanalysis(NCEP-CFSR), Climate Hazards Group InfraRed Precipitation with Station Data(CHIRPS), China Gauge-based Daily Precipitation Analysis developed by China Meteorological Administration(CMA) and Agricultural Model Intercomparison and Improvement Project based on the NASA Modern-Era Retrospective Analysis for Research and Applications(AgMERRA)—were evaluated using statistical methods and a hydrological approach for their suitability for the Lancang River Basin. The results indicated that APHRODITE, CMA, AgMERRA and CHIRPS were more accurate precipitation indicators than NCEP-CFSR in terms of the multiyear average and seasonal spatial distribution pattern, all of the CHIRPS, Ag MERRA and APHRODITE perform better than CMA and NCEP-CFSR at the small, medium and high precipitation intensities ranges in subbasin11 and sunbabsin46. All five products performed better in subbasin46(a low-altitude region) than in subbasin11(a high-altitude region) on the daily and monthly scales. In addition to NCEP-CFSR, the other four products all presented encouraging potential for streamflow simulation at daily(Yunjinghong) and monthly(Yunjinghong, Jiuzhou and Gajiu) scale. Hydrological simulations forced with APHRODITE were the best of the five for the Yunjinghong station in capturing daily and monthly measured streamflow. Except for NCEP-CFSR, all products were very good for hydrological simulations for the Gajiu and Jiuzhou stations.
基金supported by the National Key Basic Research Program of China (the 973 Program,Grant No.2006CB400502)the Innovative Research Team Project of the State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering (Grant No. 2009585412)+3 种基金the Special Basic Research Fund by the Ministry of Science and Technology,China (Grant No. 2009IM020104)the Programme of Introducing Talents of Discipline to Universities by the Ministry of Educationthe State Administration of Foreign Experts Affairs,China (the 111 Project,Grant No. B08048)the Fundamental Research Funds for the Central Universities (Grants No. 2010B13614 and 2009B11614)
文摘Three high-resolution satellite precipitation products, the Tropical Rainfall Measuring Mission (TRMM) standard precipitation products 3B42V6 and 3B42RT and the Climate Precipitation Center's (CPC) morphing technique precipitation product (CMORPH), were evaluated against surface rain gauge observations from the Laohahe Basin in northern China. Widely used statistical validation indices and categorical statistics were adopted. The evaluations were performed at multiple time scales, ranging from daily to yearly, for the years from 2003 to 2008. The results show that all three satellite precipitation products perform very well in detecting the occurrence of precipitation events, but there are some different biases in the amount of precipitation. 3B42V6, which has a bias of 21%, fits best with the surface rain gauge observations at both daily and monthly scales, while the biases of 3B42RT and CMORPH, with values of 81% and 67%, respectively, are much higher than a normal receivable threshold. The quality of the satellite precipitation products also shows monthly and yearly variation: 3B42RT has a large positive bias in the cold season from September to April, while CMORPH has a large positive bias in the warm season from May to August, and they all attained their best values in 2006 (with 10%, 50%, and -5% biases for 3B42V6, 3B42RT, and CMORPH, respectively). Our evaluation shows that, for the Laohahe Basin, 3B42V6 has the best correspondence with the surface observations, and CMORPH performs much better than 3B42RT. The large errors of 3B42RT and CMORPH remind us of the need for new improvements to satellite precipitation retrieval algorithms or feasible bias adjusting methods.
基金jointly supported by the National Natural Science Foundation of China(31400425,31570437,41301043,31420103917)the National Key Project of Scientific and Technical Supporting Program(2013BAC03B03)+1 种基金the Funding for Talented Young Scientists of IGSNRR(2013RC203)the Social Foundation of Beijing Academy of Social Sciences(154005)
文摘Changes in the sizes of precipitation events in the context of global climate change may have profound impacts on ecosystem productivity in arid and semiarid grasslands. However, we still have little knowledge about to what extent grassland productivity will respond to an individual precipitation event. In this study, we quantified the duration, the maximum, and the time-integrated amount of the response of daily gross primary productivity (GPP) to an individual precipitation event and their variations with different sizes of precipitation events in a typical temperate steppe in Inner Mongolia, China. Results showed that the duration of GPP-response (τ<sub>R</sub>) and the maximum absolute GPP-response (GPP<sub>max</sub>) increased linearly with the sizes of precipitation events (P<sub>es</sub>), driving a corresponding increase in time-integrated amount of the GPP-response (GPP<sub>total</sub>) because variations of GPPtotal were largely explained by τ<sub>R</sub> and GPP<sub>max</sub>. The relative contributions of these two parameters to GPP<sub>total</sub> were strongly P<sub>es</sub>-dependent. The GPP<sub>max</sub> contributed more to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively small (<20 mm), whereas τ<sub>R</sub> was the main driver to the variations of GPP<sub>total</sub> when P<sub>es</sub> was relatively large. In addition, a threshold size of at least 5 mm of precipitation was required to induce a GPP-response for the temperate steppe in this study. Our work has important implications for the modeling community to obtain an advanced understanding of productivity-response of grassland ecosystems to altered precipitation regimes.
文摘Transmission electron microscopy (TEM) and physics-chemical phase analysis were employed to investigate the precipitates in high strength steels microalloyed with Ti produced by compact strip production (CSP). It was seen that precipitates in Ti microalloyed steels mainly included TiN, Ti4C2S2, and TiC. The size of TiN particles varied from 50 to 500 nm, and they could precipitate during or before soaking. The Ti4C2S2 with the size of 40-100 nm might precipitate before rolling, and the TiC particles with the size of 5-50 nm precipitated heterogeneously. High Ti content would lead to the presence of bigger TiC particles that precipitated in austenite, and by contrast, TiC particles that precipitated in ferrite and the transformation of austenite to ferrite was smaller. They were less than 30 nm and mainly responsible for precipitate strengthening. It should be noted that the TiC particles in higher Ti content were generally smaller than those in the steel with a lower Ti content.
基金jointly funded by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA20020401)the Young Foundation of Institute of Mountain Hazard and Environment(SDS-QN-1702)National Natural Science Foundation of China(Grant No.41571205)
文摘The above-ground net primary production(ANPP) and the precipitation-use efficiency(PUE) regulate the carbon and water cycles in grassland ecosystems, but the relationships among the ANPP, PUE and precipitation are still controversial. We selected 717 grassland sites with ANPP and mean annual precipitation(MAP) data from 40 publications to characterize the relationships ANPP–MAP and PUE–MAP across different grassland types. The MAP and ANPP showed large variations across all grassland types, ranging from 69 to 2335 mm and 4.3 to 1706 g m^(-2), respectively. The global maximum PUE ranged from 0.19 to 1.49 g m^(-2) mm^(-1) with a unimodal pattern. Analysis using the sigmoid function explained the ANPP–MAP relationship best at the global scale. The gradient of the ANPP–MAP graph was small for arid and semi-arid sites(MAP <400 mm). This study improves our understanding of the relationship between ANPP and MAP across dry grassland ecosystems. It provides new perspectives on the prediction and modeling of variations in the ANPP for different grassland types along precipitation gradients.
基金supported by The Technology Innovation Team(Tianshan Innovation Team),Innovative Team for Efficient Utilization of Water Resources in Arid Regions(2022TSYCTD0001)the National Natural Science Foundation of China(42171269)the Xinjiang Academician Workstation Cooperative Research Project(2020.B-001).
文摘Xinjiang Uygur Autonomous Region is a typical inland arid area in China with a sparse and uneven distribution of meteorological stations,limited access to precipitation data,and significant water scarcity.Evaluating and integrating precipitation datasets from different sources to accurately characterize precipitation patterns has become a challenge to provide more accurate and alternative precipitation information for the region,which can even improve the performance of hydrological modelling.This study evaluated the applicability of widely used five satellite-based precipitation products(Climate Hazards Group InfraRed Precipitation with Station(CHIRPS),China Meteorological Forcing Dataset(CMFD),Climate Prediction Center morphing method(CMORPH),Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record(PERSIANN-CDR),and Tropical Rainfall Measuring Mission Multi-satellite Precipitation Analysis(TMPA))and a reanalysis precipitation dataset(ECMWF Reanalysis v5-Land Dataset(ERA5-Land))in Xinjiang using ground-based observational precipitation data from a limited number of meteorological stations.Based on this assessment,we proposed a framework that integrated different precipitation datasets with varying spatial resolutions using a dynamic Bayesian model averaging(DBMA)approach,the expectation-maximization method,and the ordinary Kriging interpolation method.The daily precipitation data merged using the DBMA approach exhibited distinct spatiotemporal variability,with an outstanding performance,as indicated by low root mean square error(RMSE=1.40 mm/d)and high Person's correlation coefficient(CC=0.67).Compared with the traditional simple model averaging(SMA)and individual product data,although the DBMA-fused precipitation data were slightly lower than the best precipitation product(CMFD),the overall performance of DBMA was more robust.The error analysis between DBMA-fused precipitation dataset and the more advanced Integrated Multi-satellite Retrievals for Global Precipitation Measurement Final(IMERG-F)precipitation product,as well as hydrological simulations in the Ebinur Lake Basin,further demonstrated the superior performance of DBMA-fused precipitation dataset in the entire Xinjiang region.The proposed framework for solving the fusion problem of multi-source precipitation data with different spatial resolutions is feasible for application in inland arid areas,and aids in obtaining more accurate regional hydrological information and improving regional water resources management capabilities and meteorological research in these regions.
基金supported by the Sichuan Meteorological Bureau,the Sichuan Meteorological Observation and Data Centerthe Heavy Rain and Drought-Flood Disasters in Plateau and Basin Key Laboratory of Sichuan Province[grant number SCQXKJQN202121]+1 种基金the Key Technology Development Project of Weather Forecasting[grant number YBGJXM(2020)1A-08]the Innovative Development Project of the China Meteorological Administration[grant number CXFZ2021Z007]。
文摘High-quality and high-resolution precipitation data are the basis for mesoscale numerical weather forecasting,model verification,and hydrological monitoring,which play an important role in meteorological and hydrological disaster prevention and mitigation.In this study,high-density rain gauge data are used to evaluate the fusion accuracy of the China Meteorological Administration Multisource Precipitation Analysis System(CMPAS),and four CMPAS products with different spatial and temporal resolution and different data sources are compared,to derive the applicability of CMPAS.Results show that all the CMPAS products show high accuracy in the Sichuan Basin,followed by Panxi Area and the western Sichuan Plateau.The errors of the four products all rise with the increase in precipitation.CMPAS overestimates precipitation in summer and autumn and underestimates it in spring and winter.Overall,the applicability of these fused data in the Sichuan Basin is quite good.Due to the lack of observations and the influence of the terrain and meteorological conditions,the evaluation of CMPAS in the plateau area needs further analysis.
文摘Bangladesh is a flood prone country where precipitation amount is irregular but sometimes extreme. Among the climatic parameters, precipitation is assumed as one of the vital indicators of ongoing climate change scenarios and is equally important for tea production. In this study, 7 and 9 tea estates of Sylhet and Sreemangal were selected to analyze tea production in relation to extreme precipitation intensity. Precipitation patterns namely 90<sup>th</sup>, 95<sup>th</sup> and 99<sup>th</sup> percentile were analyzed to find out the contribution of extreme precipitation and tea production. To attain the objectives, 3 hourly, daily, monthly, and total precipitation data from 1971 to 2014 were collected from Bangladesh Meteorological Department and Bangladesh Agricultural Development Board. Tea production data were collected from Bangladesh Tea Board, Sylhet. To find out extreme level of precipitation 90<sup>th</sup>, 95<sup>th</sup>, 99<sup>th</sup> percentile precipitation days were identified and analyzed. The analyses show that 1974, 1976, 1977, 1993, 1988, 1990, 2000, 2001, 2002, and 2004 were extreme precipitation years. The average precipitation of Sylhet was higher in 2000 than in 1992 and 2014. In Sreemangal, extreme precipitation was higher in 2014 than in 1992 and 2000. For both the regions, tea production was higher in 2000 and lower in 1992 and 2014. The result shows that more extreme precipitation was responsible for higher amount of tea production. The results suggest that extreme precipitation intensity was one of the responsible factors for higher amount of tea production in Sylhet and Sreemangal.
文摘Asphaltenes are complex molecular entities, which together with resins, aromatic hydrocarbons and saturates forms the crude oil. Asphaltenes and resins are in the thermodynamic equilibrium at static reservoir condition. However, asphaltene can precipitate due to changes in thermodynamic condition. Asphaltene deposition in production tubings has been an outstanding problem with wide economic impact on the oil industry. Meanwhile, the use of real-time tools to monitor depositions along the well is of great difficulty. In this work, the asphaltene precipitation region in a single phase flow wellbore is predicted for an oil well of the Iranian oil field. Then, asphaltene deposition thickness along the well is predicted for three time intervals. The simulation results indicated that asphaltene thickness exceeded more than 50% of tubing radius;therefore, a reduction in flow rate, an increase in pressure drop and tubing blockage are expected. Moreover, it is shown the deposits thickness along the wellbore has approximately a skew normal distribution shape, which could be the result of increases in velocity and excess pressure drop.
文摘Satellite precipitation products are widely used in different domain, in area where there is a lack in observation. These have different spatio-temporal resolutions consequently resulting in different precipitation amounts depending on the product. The present study validates three satellite products, namely the Climate Hazard group Infrared Precipitation with Stations (CHIRPS), the Climate Research Unit (CRU) and the Global Precipitation Climatology Project (GPCP) over Bandama and Mono river basins for 1981-2005 and 1981-2016 respectively by comparing them to the observation precipitation of the basin. The available studies are focused on the regional scale but not on a watershed scale for hydrological studies. The analysis reveals that all the products are strongly correlated to each other as well as to the observed data at basin level. The Lamb coefficient test shows that most all the chosen basin namely Bandama and Mono presents the same climatic indices. All the products present the same variability and trend as the observation at basins scale. By comparing those products to observation, CHIRPS product following by GPCP give the lowest mean absolute error (MAE) at annual and seasonal time scales while CHIRPS is followed by CRU at monthly scale. Overall, all products overestimate the precipitation at Bandama basin while they underestimate it over Mono river basin. The comparison over 1981-2017 period of the total annual precipitation increasing southern ward (from Sahel to the coastal zone) for all the three studied products which varies from 300 mm to 2400 mm/year. All the three products are not significantly different from one another and they all highlight the same areas of hotspot rainfall in the region. The same conclusion is made at monthly and seasonal scales. Therefore, any of these products especially CHIRPS can be used for study in this region due to its lowest bias and MAE.
基金The National Basic Research Project (973) of China (No. 2002CB412500) and the Pilot Project of Knowledge and InnovationProgram of the Chinese Academy of Sciences (No. KZCX1-01-17)
文摘Precipitation is considered to be the primary resource limiting terrestrial biological activity in water-limited regions. Its overriding effect on the production of grassland is complex. In this paper, field data of 48 sites (including temperate meadow steppe, temperate steppe, temperate desert steppe and alpine meadow) were gathered from 31 published papers and monographs to analyze the relationship between above-ground net primary productivity (ANPP) and precipitation by the method of regression analysis. The results indicated that there was a great difference between spatial pattern and temporal pattern by which precipitation influenced grassland ANPP. Mean annual precipitation (MAP) was the main factor determining spatial distribution of grassland ANPP (r^2 = 0.61, P 〈 0.01); while temporally, no significant relationship was found between the variance of AN PP and inter-annual precipitation for the four types of grassland. However, after dividing annual preeipitation into monthly value and taking time lag effect into account, the study found significant relationships between ANPP and precipitation. For the temperate meadow steppe, the key variable determining inter-annual change of ANPP was last August-May precipitation (r^2 = 0.47, P = 0.01); for the temperate steppe, the key variable was July precipitation (r^2 = 0.36, P = 0.02); for the temperate desert steppe, the key variable was April-June precipitation (r^2 = 0.51, P 〈 0.01); for the alpine meadow, the key variable was last September-May precipitation (r^2 = 0.29, P 〈 0.05). In comparison with analogous research, the study demonstrated that the key factor determining inter-annual changes of grassland ANPP was the cumulative precipitation in certain periods of that year or the previous year.
基金Item Sponsored by National Natural Science Foundation of China (50334010) and Fokying Tung Education Foundation (104017)
文摘The morphology of manganese sulfide formed during thin slab continuous casting process in low-carbon steel produced by compact strip production (CSP) technique was investigated. Using transmission electron microscopy analysis, it was seen that a majority of manganese sulfides precipitated at austenite grain boundaries, the morphologies of which were spherical or close to the spherical shape and the size of MnS precipitates ranged from 30 nm to 100 nm. A mathematical model of the manganese sulfide precipitation in this process was developed based on classical nucleation theory. Under the given conditions, the starting and finishing precipitation temperatures of MnS in the continuous casting thin slab of the studied low-carbon steel are 1 189 ℃ and 1 171 ℃, respectively, and the average diameter of MnS precipitates is about 48 nm within this precipitation temperature range. The influences of chemical components and thermo-mechanical processing conditions on the precipitation behavior of MnS in the same process were also discussed.
基金National Key R&D Program of China(No.2016YFA0601601)National Natural Science Foundation of China(No.41601026,41661099)Science and Technology Planning Project of Yunnan Province,China(No.2017FB073)
文摘Satellite-based products with high spatial and temporal resolution provide useful precipitation information for data-sparse or ungauged large-scale watersheds. In the Lower Lancang-Mekong River Basin, rainfall stations are sparse and unevenly distributed, and the transboundary characteristic makes the collection of precipitation data more difficult, which has restricted hydrological processes simulation. In this study, daily precipitation data from four datasets(gauge observations, inverse distance weighted(IDW) data, Tropical Rainfall Measuring Mission(TRMM) estimates, and Climate Hazards Group InfraRed Precipitation with Stations(CHIRPS) estimates), were applied to drive the Soil and Water Assessment Tool(SWAT) model, and then their capability for hydrological simulation in the Lower Lancang-Mekong River Basin were examined. TRMM and CHIRPS data showed good performances on precipitation estimation in the Lower Lancang-Mekong River Basin, with the better performance for TRMM product. The Nash-Sutcliffe efficiency(NSE) values of gauge, IDW, TRMM, and CHIRPS simulations during the calibration period were 0.87, 0.86, 0.95, and 0.93 for monthly flow, respectively, and those for daily flow were 0.75, 0.77, 0.86, and 0.84, respectively. TRMM and CHIRPS data were superior to rain gauge and IDW data for driving the hydrological model, and TRMM data produced the best simulation performance. Satellite-based precipitation estimates could be suitable data sources when simulating hydrological processes for large data-poor or ungauged watersheds, especially in international river basins for which precipitation observations are difficult to collect. CHIRPS data provide long precipitation time series from 1981 to near present and thus could be used as an alternative precipitation input for hydrological simulation, especially for the period without TRMM data. For satellite-based precipitation products, the differences in the occurrence frequencies and amounts of precipitation with different intensities would affect simulation results of water balance components, which should be comprehensively considered in water resources estimation and planning.
基金This work was supported by the National Natural Science Foundation of China under grant Nos. 50334010 and 50271009.
文摘Microalloying element Nb in low carbon steels produced by compact strip production (CSP) process plays an important role in inhibiting recrystallization, decreasing the transformation temperature and grain refinement.With decreasing the rolling temperature, dislocations can be pinned by carbonitrides and the strength is increased. Based on the two sublattice model, with metal atom sublattice and interstitial atom sublattice,a thermodynamic model for carbonitride was established to calculate the equilibrium between matrix and carbonitride. In the steel produced by CSP, the calculation results showed that the starting temperature of precipitation of Ti and Nb are 1340℃ and 1040℃, respectively. In the range of 890-950℃, Nb rapidly precipitated. And the maximum of the atomic fraction of Nb in carbonitride was about 0.68. The morphologies and energy spectrum of the precipitates showed that (NbTi) (CN) precipitated near the dislocations. The experiment results show that Nb rapidly precipitated when the temperature was lower than 970℃, and the atomic fraction of Nb in carbonitride was about 60%-80%. The calculation results are in agreement with the experiment data. Therefore the thermodynamic model can be a useful assistant tool in the research on the precipitates in the low carbon steels produced by CSP.
文摘The possibility of multiplicity in an isothermal continuous mixed suspension-mixed product removalcrystallizer is explored using the bifurcation theory. A process involving agglomeration controlled precipitationis considered in which secondary nucleation occurs simultaneously with primary nucleation. The determinantequations for the existence of multiple steady states are developed and the multiplicity boundaries dependent on thephysical and kinetic properties and operational parameters of the process are obtained by resolving these determinantequations. The number of steady states in the precipitator for various multiplicity regions is determined and thelinear stability of these steady states is analyzed by using the Routh criterion.
基金This work was supported by the National Natural Science Foundation of China(81703403)the National Key Research and Development Program of China(2019YFC1711200)+1 种基金the Fundamental Research Funds of Shandong University(2019GN092)Major Innovation Project of China(2018ZX09201010).
文摘Precipitation is a key manufacturing unit during the immunoglobulin G(IgG)production,which guarantees the quality of the final product.Ethanol is usually used to purify IgG during the precipitation process,so it is important to monitor the ethanol concentration online.Near-infrared(NIR)spectroscopy is a powerful process analytical technology(PAT)which has been proved to be feasible to determine the ethanol concentration during the precipitation process.However,the NIR model is usually established based on the specific process,so a universal model is needed.And the clarity degree of solution will affect the quality of the spectra.Therefore,in this study an integrated NIR system was introduced to establish a universal NIR model which could predict the ethanol concentration online and determine the end-point of the whole process.First,a spectra acquisition device was designed and established in order to get high-quality NIR spectra.Then,a simple prepared ethanol NIR model was constructed to predict the actual manufacturing process.Finally,the end-point was determined to stop the peristaltic pump when the ethanol concentration reached 20%.The results showed that the spectra quality was good,model prediction was accurate,and process monitoring was accurate.In conclusion,all results indicated that the integrated NIR system could be used to monitor the biopharmaceutical process to help us understand the pharmaceutical process.
文摘The lattice Boltzmann method(LBM)is used to simulate the growth of a solid-deposit on the walls of a circular tube resulting from a gas-to-solid reaction and precipitation process.This process is of particular interest for the design of reactors for the production of hydrogen by the heterogeneous hydrolysis of steam with Zn vapor in the Zn/ZnO thermochemical cycle.The solid deposit of ZnO product on the tube wall evolves in time according to the temporally-and axially-varying convective-diffusive transport and reaction of Zn vapor with steam on the solid surface.The LBM is wellsuited to solving problems with coupled flow,heat and mass transfer in a time-evolving domain.Here,a D2Q9 axisymmetric multiple-relaxation-time(MRT)lattice Boltzmann scheme is used to simulate incompressible fluid transport while a D2Q5 axisymmetric MRT lattice Boltzmann scheme is used to simulate the convective-diffusive transport of Zn vapor.The model is first validated against several analytical solutions,followed by a parametric study to understand the effect of Reynolds,Schmidt,and Damk?hler numbers on the time evolution of the ZnO deposition profile along the tube axis.The axial location of the fastest deposition is found to increase with increasing Peclet number,and decrease with increasing Damk?hler number,with no independent effect from the Schmidt number.When the reaction kinetics are assumed to increase along the tube axis due to nonisothermal tube wall temperature,a second peak in the deposition profile can be observed for sufficiently low values of Da/Pe.
基金Project(TD2011-01)supported by the Fundamental Research Funds for the Central Universities,ChinaProject(20133050)supported by the China Scholarship Council
文摘Negative effect of precipitation on plant photosynthesis was investigated in this work. Stomatal conductance, transpiration rate and net photosynthetic rate were measured before and after each precipitation event, respectively, and the corresponding precipitation was recorded as well. Moreover, plant dry matter accumulation was counted at the end of our entire experiment. The results show that precipitation fully demonstrates its negative effect on plant photosynthesis under the condition of without water shortage. Although it has not been proved, leaf shape seems to be associated with this effect. Broad-leaved species are less influenced than coniferous and lanceleaf species no matter on the length of variation time or changes in variation values. The different situation among three broad-leaved species seems to illustrate that the effect is also related to the size of single leaf area. The correlation between precipitation and photosynthetic rate variation is analogous to the relationship between precipitation and splash erosion, and in the view of the relationship between plant photosynthetic characteristics and dry mass accumulation, it can be thought that it can reflect the negative impact of precipitation on plant growth by making use of splash erosion. Therefore, a section was added in the traditional plant biomass estimation algorithms by using eco-physiological models, and this was proved to enhance the accuracy of traditional estimation from preliminary verifications.