Experiment researches have proven that there is an obvious phenomenon of abrupt geothermal anomaly in volcanic region in the forewarning period of volcano eruption, which is closely related to the geological structure...Experiment researches have proven that there is an obvious phenomenon of abrupt geothermal anomaly in volcanic region in the forewarning period of volcano eruption, which is closely related to the geological structure, the cause, the scale and the type of volcano etc. On the other hand, this kind of geothermal anomaly is an important sign to monitor volcano activity by thermal infrared remote sensing techniques. This paper discusses the feature of abrupt geothermal anomaly, the transmission mechanism of geothermal anomaly and the radiation transmission mechanism of heat field of terrene in volcanic region. By analyzing mechanism of terrene temperature rising by way of conduction and convection of heat, we have presented the transmission equation of atmosphere for thermal infrared radiation based on the effective radiation of objects. The related problems of noise interference in the processes of transmission for thermal infrared radiation will be discussed in the later paper.展开更多
According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under...According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.展开更多
The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extra...The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extraction of mineral deposits, such as the Ni-Cu deposit in eastern Tianshan, the gypsum in western Tianshan, and the borax in Tibetan. This paper discusses the extraction methodology using the ASTER remote sensing data and reveals the good extraction results. This paper bravely represents the summary of the main achievement for this field by the scientists in other countries and gives a comparison with the works by others. The new achievements, described in this paper, comprise the extraction of anomalies for Ni-Cu deposit, gypsum, and borax.展开更多
Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in th...Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.展开更多
The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval a...The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.展开更多
Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid devel...Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology,space monitoring of volcanic activities has already become possible,particularly in the application of thermal infrared remote sensing. The paper,through the detailed analysis of geothermal anomaly factors such as heat radiation,heat conduction and convection,depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed,and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also,a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally,some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.展开更多
In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone fa...In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed.展开更多
With the portable Fourier Transform Infrared Spectroscopy (FTIR), the reflectance spectra of soil samples with different moisture content are measured in laboratory for expounding the characteristic of radiation in th...With the portable Fourier Transform Infrared Spectroscopy (FTIR), the reflectance spectra of soil samples with different moisture content are measured in laboratory for expounding the characteristic of radiation in the thermal infrared part of the spectrum with different soil moisture content. A model of estimating the moisture content in soil is attempted to make based on Moisture Diagnostic Index (MDI). In general,the spectral characteristic of soil emissivity in laboratory includes the following aspects.Firstly,in the region of 8.0-9.5 μm,along with the increase of soil moisture content,the emissivity of soil increases to varying degrees. The spectral curves are parallel relatively and have a tendency to become horizontal and the absorbed characteristic of reststrahlen is also weakened relatively with the increase of soil moisture in this region.Secondly,in the region of 11.0-14.0 μm,the emissivity of soil has a tendency of increasing.There is an absorption value near about 12.7 μm. As the soil moisture content increases,the depth of absorption also increases. This phenomenon may be caused by soil moisture absorption. Methods as derivative, difference and standardized ratio transformation may weaken the background noise effectively to the spectrum data. Especially using the ratio of the emissivity to the average of 8-14 μm may obviously enhance the correlation between soil moisture and soil emissivity. According to the result of correlation analysis, the 8.237 μm is regarded as the best detecting band for soil moisture content. Moreover,based on the Moisture Diagnostic Index ( MDI) in the 8.194-8.279 μm, the logarithmic model of estimating soil moisture is made.展开更多
Aiming at two Dayao earthquakes with magnitude more than 6 occurred in 2003 in Yunnan Province, we analyzed and interpreted the NOAA satellite thermal infrared images of 1999, 2003 and 2004 in Chuandian region, and al...Aiming at two Dayao earthquakes with magnitude more than 6 occurred in 2003 in Yunnan Province, we analyzed and interpreted the NOAA satellite thermal infrared images of 1999, 2003 and 2004 in Chuandian region, and also calculated the annual variation of brightness temperature of the hot belt along Honghe fault to explore the formation cause of the high temperature belt and its relation to the earthquakes. The results show that the high temperature belt along Honghe fault is caused by geographic environment factors, such as water system and terrain. But the annual average brightness temperature of the belt in earthquake year of 2003 is clearly higher than that in no earthquake years of 1999 and 2004, this maybe indicates that the thermal activities of Honghe fault increase in earthquake years, and can cause the annual variation anomaly of brightness temperature. We can detect and monitor this thermal activities of Honghe fault before earthquake by analyzing and comparing the relative changes of thermal infrared brightness temperature of the hot belt in different years.展开更多
After using the "Time-Frequency Relative Power Spectrum"( T-F RPS) method based on the China Geostationary Meteorological Satellite( FY-2 C/FY-2 E) infrared remote sensing brightness temperature data process...After using the "Time-Frequency Relative Power Spectrum"( T-F RPS) method based on the China Geostationary Meteorological Satellite( FY-2 C/FY-2 E) infrared remote sensing brightness temperature data processing,we rapidly and accurately extracted and identified pre-earthquake thermal infrared anomalies for the April 16,2013 MW7. 8 of Khash,Iran Earthquake. Spatial evolution of anomalies showed the distribution and process. The anomalies were mainly distributed in the east of Khash,Iran. The characteristics of process and distribution presented X-Type model of NE and near NS strip which relates to the geological structure of this region. The epicenter was located near the intersection region of the X-Type abnormal migration process. Besides,the results of time series of anomalies showed that,the duration was more than 40 days and the maximum amplitude was about18 times. The earthquake occurred 20 days after the abnormal maximum amplitude which appeared on March 26,2013.展开更多
After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for appl...After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.展开更多
The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is describe...The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.展开更多
From the theoretical point of view, the gas and oil enrichment zone continuously emanates gases to the earth surface.This geochemical component anomaly has been observed by people in their earth surface survey.In 1953...From the theoretical point of view, the gas and oil enrichment zone continuously emanates gases to the earth surface.This geochemical component anomaly has been observed by people in their earth surface survey.In 1953 R. L. Fleisher and L. G.展开更多
The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture be...The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture belt of the southern Plateau is high and the northern temperature is low. The study result in this paper shows that the highest temperature is found in the Bangong Co-Nujiang River suture belt, the Yarlung Zangbo River suture belt temperature is the second highest, and the northern Tibet temperature is the lowest. The study demonstration area was the suture belt areas of the Yarlung Zangbo River and the Bangong Co-Nujiang River in the Qinghai-Tibet Plateau, where the land temperature of the Qinghai-Tibet Plateau and the bore temperature of field land surface were measured and the emissivity of land surface was calculated. In addition, the authors explore the mechanism of the relationship between thermal infrared remote sensing and constructing thermodynamics and reach four new conclusions about the thermodynamics of the Tibet Plateau.展开更多
In this paper, with the application of satellite thermal infrared remote sensing technique, nine land surface temperature distribution maps of Changbaishan Tianchi volcano area are retrieved from nine thermal infrared...In this paper, with the application of satellite thermal infrared remote sensing technique, nine land surface temperature distribution maps of Changbaishan Tianchi volcano area are retrieved from nine thermal infrared images which are taken from 1999 to 2008. In terms of NDVI (Normalized Difference Vegetation Index), we classify the surface cover of the study area into three types, i.e. vegetation (forest), mixture of soil and vegetation (short grasses), and bare rock. The average temperature of each type of surface covers is calculated first, and then the average daily temperature record from Tianchi meteorological station is subtracted in order to reduce the effect of weather variation. Finally, thermal anomalies of three types of surface cover in Changbaishan Tianchi vol-cano area in the period of 1999 to 2008 are obtained, which is believed to reflect the magmatic activity in the magma chamber under Tianchi volcano caldera. Our results indicate that temperature of the study area increased with an intermittent tendency during 1999 to 2005, but dropped after 2005, and then maintained a relatively stable state from 2006 to 2008. Such a tendency of annual temperature variation possibly caused by magmatic activity is correlated with the results observed by means of seismic monitoring, ground deformation from GPS measurement, and volcanic gas geochemistry monitoring in the same area. It is im-plied that the upward intrusion of magma may cause temperature increase, and such temperature variation is great enough so that could be detected by using satellite thermal infrared remote sensing technology.展开更多
Geothermal anomaly as a physical phenomenon of an active and latent volca nic area would be well recog-nized,and abrupt geothermal anomaly should also be understood.However,in practical work,thermal infrare d remote s...Geothermal anomaly as a physical phenomenon of an active and latent volca nic area would be well recog-nized,and abrupt geothermal anomaly should also be understood.However,in practical work,thermal infrare d remote sensing techniques are frequently u sed to monitor geothermal flows of th e earth.But then,except for this typ e of thermal source in the surface thermal field,there still exist a lot of noises in th e area where the abrupt geothermal an omaly is generat-ed.By Analyzing the reason,we find t hat it is brought about by the non-bou ndless projection characteristics of objects.These noises may be divided into two c lasses:system noises and random noises.If disturbed noises have comparative sta-ble time sequence law and space sequence law,the noises are called system noises.And because system noises have a certain law,it is easy to remove the n oises.On the contrary,if disturbed noises have not law of time sequence a nd space sequence,the noises are called random noises.The random noises have the character of non-linearity,uncertainty and indeterminism.For this case,this p aper discusses the disturbed mechan ism of these noises as well as how to re move them..展开更多
MODerate resolution atmospheric TRANsmission(MODTRAN)is a commercial remote sensing(RS)software package that has been widely used to simulate radiative transfer of electromagnetic radiation through the Earth’s atmosp...MODerate resolution atmospheric TRANsmission(MODTRAN)is a commercial remote sensing(RS)software package that has been widely used to simulate radiative transfer of electromagnetic radiation through the Earth’s atmosphere and the radiation observed by a remote sensor.However,when very large RS datasets must be processed in simulation applications at a global scale,it is extremely time-consuming to operate MODTRAN on a modern workstation.Under this circumstance,the use of parallel cluster computing to speed up the process becomes vital to this time-consuming task.This paper presents PMODTRAN,an implementation of a parallel task-scheduling algorithm based on MODTRAN.PMODTRAN was able to reduce the processing time of the test cases used here from over 4.4 months on a workstation to less than a week on a local computer cluster.In addition,PMODTRAN can distribute tasks with different levels of granularity and has some extra features,such as dynamic load balancing and parameter checking.展开更多
Water vapor plays a crucial role in atmospheric processes that act over a wide range of temporal and spatial scales, from global climate to micrometeorology. The determination of water vapor distribution in the atmosp...Water vapor plays a crucial role in atmospheric processes that act over a wide range of temporal and spatial scales, from global climate to micrometeorology. The determination of water vapor distribution in the atmosphere and its changing pattern is very important. Although atmospheric scientists have developed a variety of means to measure precipitable water vapor(PWV) using remote sensing data that have been widely used, there are some limitations in using one kind satellite measurements for PWV retrieval over land. In this paper, a new algorithm is proposed for retrieving PWV over land by combining different kinds of remote sensing data and it would work well under the cloud weather conditions. The PWV retrieval algorithm based on near infrared data is more suitable to clear sky conditions with high precision. The 23.5 GHz microwave remote sensing data is sensitive to water vapor and powerful in cloud-covered areas because of its longer wavelengths that permit viewing into and through the atmosphere. Therefore, the PWV retrieval results from near infrared data and the indices combined by microwave bands remote sensing data which are sensitive to water vapor will be regressed to generate the equation for PWV retrieval under cloud covered areas. The algorithm developed in this paper has the potential to detect PWV under all weather conditions and makes an excellent complement to PWV retrieved by near infrared data. Different types of surface exert different depolarization effects on surface emissions, which would increase the complexity of the algorithm. In this paper, MODIS surface classification data was used to consider this influence. Compared with the GPS results, the root mean square error of our algorithm is 8 mm for cloud covered area. Regional consistency was found between the results from MODIS and our algorithm. Our algorithm can yield reasonable results on the surfaces covered by cloud where MODIS cannot be used to retrieve PWV.展开更多
文摘Experiment researches have proven that there is an obvious phenomenon of abrupt geothermal anomaly in volcanic region in the forewarning period of volcano eruption, which is closely related to the geological structure, the cause, the scale and the type of volcano etc. On the other hand, this kind of geothermal anomaly is an important sign to monitor volcano activity by thermal infrared remote sensing techniques. This paper discusses the feature of abrupt geothermal anomaly, the transmission mechanism of geothermal anomaly and the radiation transmission mechanism of heat field of terrene in volcanic region. By analyzing mechanism of terrene temperature rising by way of conduction and convection of heat, we have presented the transmission equation of atmosphere for thermal infrared radiation based on the effective radiation of objects. The related problems of noise interference in the processes of transmission for thermal infrared radiation will be discussed in the later paper.
基金Supported by the National Natural Science Foundation of China(No.41101503)the National Social Science Foundation of China(No.11&ZD161)Graduate Innovative Scientific Research Project of Chongqing Technology and Business University(No.yjscxx2014-052-29)
文摘According to the data characteristics of Landsat thematic mapper (TM) and MODIS, a new fu sion algorithm about thermal infrared data has been proposed in the article based on improving wave let reconstruction. Under the domain of neighborhood wavelet reconstruction, data of TM and MO DIS are divided into three layers using wavelet decomposition. The texture information of TM data is retained by fusing highfrequency information. The neighborhood correction coefficient method (NC CM) is set up based on the search neighborhood of a certain size to fuse lowfrequency information. Thermal infrared value of MODIS data is reduced to the space value of TM data by applying NCCM. The data with high spectrum, high spatial and high temporal resolution, are obtained through the al gorithm in the paper. Verification results show that the texture information of TM data and high spec tral information of MODIS data could be preserved well by the fusion algorithm. This article could provide technical support for high precision and fast extraction of the surface environment parame ters.
文摘The ASTER (Advanced Space-borne Thermal Emission and Reflection radiometer) data, including all the 3 parts: VNIR (Visible and Near-Infrared), SWIR (Short Wave Infrared), TIR (Thermal Infrared), were applied for extraction of mineral deposits, such as the Ni-Cu deposit in eastern Tianshan, the gypsum in western Tianshan, and the borax in Tibetan. This paper discusses the extraction methodology using the ASTER remote sensing data and reveals the good extraction results. This paper bravely represents the summary of the main achievement for this field by the scientists in other countries and gives a comparison with the works by others. The new achievements, described in this paper, comprise the extraction of anomalies for Ni-Cu deposit, gypsum, and borax.
基金Project(201412016)supported by the Special Fund for Public Projects of National Administration of Surveying,Mapping and Geoinformation of ChinaProject(51174287)supported by the National Natural Science Foundation of China
文摘Numerous coal fires burn underneath the Datong coalfield because of indiscriminate mining.Landsat TM/ETM,unmanned aerial vehicle(UAV),and infrared thermal imager were employed to monitor underground coal fires in the Majiliang mining area.The thermal field distributions of this area in 2000,2002,2006,2007,and 2009 were obtained using Landsat TM/ETM.The changes in the distribution were then analyzed to approximate the locations of the coal fires.Through UAV imagery employed at a very high resolution(0.2 m),the texture information,linear features,and brightness of the ground fissures in the coal fire area were determined.All these data were combined to build a knowledge model of determining fissures and were used to support underground coal fire detection.An infrared thermal imager was used to map the thermal field distribution of areas where coal fire is serious.Results were analyzed to identify the hot spot trend and the depth of the burning point.
基金Projects(41171326,40771198)supported by the National Natural Science Foundation of ChinaProject(08JJ6023)supported by the Natural Science Foundation of Hunan Province,China
文摘The components of urban surface cover are diversified,and component temperature has greater physical significance and application values in the studies on urban thermal environment.Although the multi-angle retrieval algorithm of component temperature has been matured gradually,its application in the studies on urban thermal environment is restricted due to the difficulty in acquiring urban-scale multi-angle thermal infrared data.Therefore,based on the existing multi-source multi-band remote sensing data,access to appropriate urban-scale component temperature is an urgent issue to be solved in current studies on urban thermal infrared remote sensing.Then,a retrieval algorithm of urban component temperature by multi-source multi-band remote sensing data on the basis of MODIS and Landsat TM images was proposed with expectations achieved in this work,which was finally validated by the experiment on urban images of Changsha,China.The results show that:1) Mean temperatures of impervious surface components and vegetation components are the maximum and minimum,respectively,which are in accordance with the distribution laws of actual surface temperature; 2) High-accuracy retrieval results are obtained in vegetation component temperature.Moreover,through a contrast between retrieval results and measured data,it is found that the retrieval temperature of impervious surface component has the maximum deviation from measured temperature and its deviation is greater than 1 ℃,while the deviation in vegetation component temperature is relatively low at 0.5 ℃.
文摘Volcanic eruption is one of the most serious geological disasters,however,a host of facts have proven that the Changbai Mountains volcano is a modern dormant one and has ever erupted disastrously. With the rapid development of remote sensing technology,space monitoring of volcanic activities has already become possible,particularly in the application of thermal infrared remote sensing. The paper,through the detailed analysis of geothermal anomaly factors such as heat radiation,heat conduction and convection,depicts the monitoring principles by which volcano activities would be monitored efficiently and effectively. Reasons for abrupt geothermal anomaly are mainly analyzed,and transmission mechanism of geothermal anomaly in the volcanic regions is explained. Also,a variety of noises disturbing the transmission of normal geothermal anomaly are presented. Finally,some clues are given based on discussing thermal infrared remote sensing monitoring mechanism toward the volcanic areas.
文摘In the experimental study, AGE-782 thermal instrument was used to detect the infrared radiation variation of coal and sandstone (wave-length range 3.6~5.5 μm was used). It's discovered that coal and sandstone failure under load have three kinds of infrared thermal features as well as infrared forewarning messages. That are: (1) temperature rises gradually but drops before failure ; (2) temperature rises gradually but quickly rises before failure; (3) first rises,then drops and lower temperature emerges before failure. The further researches and the prospect of micro-wave remote sensing detection .on ground pressure is also discussed.
基金Supported by Special Fund for Doctors by Educational Department(20050319003)
文摘With the portable Fourier Transform Infrared Spectroscopy (FTIR), the reflectance spectra of soil samples with different moisture content are measured in laboratory for expounding the characteristic of radiation in the thermal infrared part of the spectrum with different soil moisture content. A model of estimating the moisture content in soil is attempted to make based on Moisture Diagnostic Index (MDI). In general,the spectral characteristic of soil emissivity in laboratory includes the following aspects.Firstly,in the region of 8.0-9.5 μm,along with the increase of soil moisture content,the emissivity of soil increases to varying degrees. The spectral curves are parallel relatively and have a tendency to become horizontal and the absorbed characteristic of reststrahlen is also weakened relatively with the increase of soil moisture in this region.Secondly,in the region of 11.0-14.0 μm,the emissivity of soil has a tendency of increasing.There is an absorption value near about 12.7 μm. As the soil moisture content increases,the depth of absorption also increases. This phenomenon may be caused by soil moisture absorption. Methods as derivative, difference and standardized ratio transformation may weaken the background noise effectively to the spectrum data. Especially using the ratio of the emissivity to the average of 8-14 μm may obviously enhance the correlation between soil moisture and soil emissivity. According to the result of correlation analysis, the 8.237 μm is regarded as the best detecting band for soil moisture content. Moreover,based on the Moisture Diagnostic Index ( MDI) in the 8.194-8.279 μm, the logarithmic model of estimating soil moisture is made.
基金National Natural Science Foundation of China (90202018).
文摘Aiming at two Dayao earthquakes with magnitude more than 6 occurred in 2003 in Yunnan Province, we analyzed and interpreted the NOAA satellite thermal infrared images of 1999, 2003 and 2004 in Chuandian region, and also calculated the annual variation of brightness temperature of the hot belt along Honghe fault to explore the formation cause of the high temperature belt and its relation to the earthquakes. The results show that the high temperature belt along Honghe fault is caused by geographic environment factors, such as water system and terrain. But the annual average brightness temperature of the belt in earthquake year of 2003 is clearly higher than that in no earthquake years of 1999 and 2004, this maybe indicates that the thermal activities of Honghe fault increase in earthquake years, and can cause the annual variation anomaly of brightness temperature. We can detect and monitor this thermal activities of Honghe fault before earthquake by analyzing and comparing the relative changes of thermal infrared brightness temperature of the hot belt in different years.
基金the National Natural Science Foundation of China(41574044)
文摘After using the "Time-Frequency Relative Power Spectrum"( T-F RPS) method based on the China Geostationary Meteorological Satellite( FY-2 C/FY-2 E) infrared remote sensing brightness temperature data processing,we rapidly and accurately extracted and identified pre-earthquake thermal infrared anomalies for the April 16,2013 MW7. 8 of Khash,Iran Earthquake. Spatial evolution of anomalies showed the distribution and process. The anomalies were mainly distributed in the east of Khash,Iran. The characteristics of process and distribution presented X-Type model of NE and near NS strip which relates to the geological structure of this region. The epicenter was located near the intersection region of the X-Type abnormal migration process. Besides,the results of time series of anomalies showed that,the duration was more than 40 days and the maximum amplitude was about18 times. The earthquake occurred 20 days after the abnormal maximum amplitude which appeared on March 26,2013.
基金China National Key-Important Basic Research Plan (Grant No. 95-Y-38) and the Special Funds for Major State Basic Research Project (Grant No. 20000779900).
文摘After carefully studying the results of retrieval of land surface temperature(LST) by multi-channel thermal infrared remote sensing data, the authors of this paper point out that its accuracy and significance for applications are seriously damaged by the high correlation coefficient among multi-channel information and its disablement of direct retrieval of component temperature. Based on the model of directional radiation of non-isothermal mixed pixel, the authors point out that multi-angle thermal infrared remote sensing can offer the possibility to directly retrieve component temperature, but it is also a multi-parameter synchronous inverse problem. The results of digital simulation and field experiments show that the genetic inverse algorithm (GIA) is an effective method to fulfill multi-parameter synchronous retrieval. So it is possible to realize retrieval of component temperature with error less than 1K by multi-angle thermal infrared remote sensing data and GIA.
文摘The concept of quantum remote sensing and the differences between quantum remote sensing and remote sensing is introduced, an experiment about the uses of mid and thermal infrared in quantum remote sensing is described and results are analyzed.
基金Project supported by the National Natural Science Foundation of China.
文摘From the theoretical point of view, the gas and oil enrichment zone continuously emanates gases to the earth surface.This geochemical component anomaly has been observed by people in their earth surface survey.In 1953 R. L. Fleisher and L. G.
文摘The area change of heat abnormity is not in accordance with conclusions of former thermal infrared remote sensing studies of the Qinghai-Tibet Plateau, which were that the temperature of Yarlung Zangbo River suture belt of the southern Plateau is high and the northern temperature is low. The study result in this paper shows that the highest temperature is found in the Bangong Co-Nujiang River suture belt, the Yarlung Zangbo River suture belt temperature is the second highest, and the northern Tibet temperature is the lowest. The study demonstration area was the suture belt areas of the Yarlung Zangbo River and the Bangong Co-Nujiang River in the Qinghai-Tibet Plateau, where the land temperature of the Qinghai-Tibet Plateau and the bore temperature of field land surface were measured and the emissivity of land surface was calculated. In addition, the authors explore the mechanism of the relationship between thermal infrared remote sensing and constructing thermodynamics and reach four new conclusions about the thermodynamics of the Tibet Plateau.
基金supported by the National Natural Science Foundation of China (40972209)the National Key Technology R&D Program of China (2006BAC01B040102)
文摘In this paper, with the application of satellite thermal infrared remote sensing technique, nine land surface temperature distribution maps of Changbaishan Tianchi volcano area are retrieved from nine thermal infrared images which are taken from 1999 to 2008. In terms of NDVI (Normalized Difference Vegetation Index), we classify the surface cover of the study area into three types, i.e. vegetation (forest), mixture of soil and vegetation (short grasses), and bare rock. The average temperature of each type of surface covers is calculated first, and then the average daily temperature record from Tianchi meteorological station is subtracted in order to reduce the effect of weather variation. Finally, thermal anomalies of three types of surface cover in Changbaishan Tianchi vol-cano area in the period of 1999 to 2008 are obtained, which is believed to reflect the magmatic activity in the magma chamber under Tianchi volcano caldera. Our results indicate that temperature of the study area increased with an intermittent tendency during 1999 to 2005, but dropped after 2005, and then maintained a relatively stable state from 2006 to 2008. Such a tendency of annual temperature variation possibly caused by magmatic activity is correlated with the results observed by means of seismic monitoring, ground deformation from GPS measurement, and volcanic gas geochemistry monitoring in the same area. It is im-plied that the upward intrusion of magma may cause temperature increase, and such temperature variation is great enough so that could be detected by using satellite thermal infrared remote sensing technology.
文摘Geothermal anomaly as a physical phenomenon of an active and latent volca nic area would be well recog-nized,and abrupt geothermal anomaly should also be understood.However,in practical work,thermal infrare d remote sensing techniques are frequently u sed to monitor geothermal flows of th e earth.But then,except for this typ e of thermal source in the surface thermal field,there still exist a lot of noises in th e area where the abrupt geothermal an omaly is generat-ed.By Analyzing the reason,we find t hat it is brought about by the non-bou ndless projection characteristics of objects.These noises may be divided into two c lasses:system noises and random noises.If disturbed noises have comparative sta-ble time sequence law and space sequence law,the noises are called system noises.And because system noises have a certain law,it is easy to remove the n oises.On the contrary,if disturbed noises have not law of time sequence a nd space sequence,the noises are called random noises.The random noises have the character of non-linearity,uncertainty and indeterminism.For this case,this p aper discusses the disturbed mechan ism of these noises as well as how to re move them..
基金This work was mainly supported by the National High-Technology Research and Development Program(863)[grant number 2013AA122801]the National Science Foundation of the United States[Award No.1251095]+3 种基金Also it was partially supported by the Fundamental Research Funds for the Central Universities[grant number ZYGX2015J111]the project entitled‘Design and development of the parallelism for typical remote sensing image algorithm based on heterogeneous computing’from the Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciencesthe project entitled‘CAST Innovation Fund:the Study of Agent and Cloud Based Spatial Big Data Service Chain’also the National Natural Science Foundation of China[grant number 51277167].
文摘MODerate resolution atmospheric TRANsmission(MODTRAN)is a commercial remote sensing(RS)software package that has been widely used to simulate radiative transfer of electromagnetic radiation through the Earth’s atmosphere and the radiation observed by a remote sensor.However,when very large RS datasets must be processed in simulation applications at a global scale,it is extremely time-consuming to operate MODTRAN on a modern workstation.Under this circumstance,the use of parallel cluster computing to speed up the process becomes vital to this time-consuming task.This paper presents PMODTRAN,an implementation of a parallel task-scheduling algorithm based on MODTRAN.PMODTRAN was able to reduce the processing time of the test cases used here from over 4.4 months on a workstation to less than a week on a local computer cluster.In addition,PMODTRAN can distribute tasks with different levels of granularity and has some extra features,such as dynamic load balancing and parameter checking.
基金supported by the National Natural Science Foundation of China(Grant Nos.4147130541405036&41301653)+1 种基金the Sichuan Youth Science Foundation(Grant No.2015JQ0037)the Chongqing Meteorological Bureau Open Fund(Grant No.KFJJ-201402)
文摘Water vapor plays a crucial role in atmospheric processes that act over a wide range of temporal and spatial scales, from global climate to micrometeorology. The determination of water vapor distribution in the atmosphere and its changing pattern is very important. Although atmospheric scientists have developed a variety of means to measure precipitable water vapor(PWV) using remote sensing data that have been widely used, there are some limitations in using one kind satellite measurements for PWV retrieval over land. In this paper, a new algorithm is proposed for retrieving PWV over land by combining different kinds of remote sensing data and it would work well under the cloud weather conditions. The PWV retrieval algorithm based on near infrared data is more suitable to clear sky conditions with high precision. The 23.5 GHz microwave remote sensing data is sensitive to water vapor and powerful in cloud-covered areas because of its longer wavelengths that permit viewing into and through the atmosphere. Therefore, the PWV retrieval results from near infrared data and the indices combined by microwave bands remote sensing data which are sensitive to water vapor will be regressed to generate the equation for PWV retrieval under cloud covered areas. The algorithm developed in this paper has the potential to detect PWV under all weather conditions and makes an excellent complement to PWV retrieved by near infrared data. Different types of surface exert different depolarization effects on surface emissions, which would increase the complexity of the algorithm. In this paper, MODIS surface classification data was used to consider this influence. Compared with the GPS results, the root mean square error of our algorithm is 8 mm for cloud covered area. Regional consistency was found between the results from MODIS and our algorithm. Our algorithm can yield reasonable results on the surfaces covered by cloud where MODIS cannot be used to retrieve PWV.