期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
The recognition of ocean red tide with hyper-spectral-image based on EMD
1
作者 赵文仓 韦洪丽 +1 位作者 时长江 姬光荣 《Chinese Journal of Oceanology and Limnology》 SCIE CAS CSCD 2008年第2期137-141,共5页
A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East C... A new technique is introduced in this paper regarding red tide recognition with remotely sensed hyper-spectral images based on empirical mode decomposition (EMD), from an artificial red tide experiment in the East China Sea in 2002. A set of characteristic parameters that describe absorbing crest and reflecting crest of the red tide and its recognition methods are put forward based on general pictre data, with which the spectral information of certain non-dominant alga species of a red tide occurrence is analyzed for establishing the foundation to estimate the species. Comparative experiments have proved that the method is effective. Meanwhile, the transitional area between red-tide zone and non-red-tide zone can be detected with the information of thickness of algae influence, with which a red tide can be forecast. 展开更多
关键词 red tide recognition aerial remote sensing hyper-spectral image empirical mode decomposition (EMD) characteristic parameter
下载PDF
Spatial-Aware Supervised Learning for Hyper-Spectral Image Classification Comprehensive Assessment
2
作者 SOOMRO Bushra Naz XIAO Liang +1 位作者 SOOMRO Shahzad Hyder MOLAEI Mohsen 《Journal of Donghua University(English Edition)》 EI CAS 2016年第6期954-960,共7页
A comprehensive assessment of the spatial.aware mpervised learning algorithms for hyper.spectral image (HSI) classification was presented. For this purpose, standard support vector machines ( SVMs ), mudttnomial l... A comprehensive assessment of the spatial.aware mpervised learning algorithms for hyper.spectral image (HSI) classification was presented. For this purpose, standard support vector machines ( SVMs ), mudttnomial logistic regression ( MLR ) and sparse representation (SR) based supervised learning algorithm were compared both theoretically and experimentally. Performance of the discussed techniques was evaluated in terms of overall accuracy, average accuracy, kappa statistic coefficients, and sparsity of the solutions. Execution time, the computational burden, and the capability of the methods were investigated by using probabilistie analysis. For validating the accuracy a classical benchmark AVIRIS Indian pines data set was used. Experiments show that integrating spectral.spatial context can further improve the accuracy, reduce the misclassltication error although the cost of computational time will be increased. 展开更多
关键词 learning algorithms hyper-spectral image classification support vector machine(SVM) multinomial logistic regression(MLR) elastic net regression(ELNR) sparse representation(SR) spatial-aware
下载PDF
High-resolution Hyper-spectral Image Classification with Parts-based Feature and Morphology Profile in Urban Area 被引量:1
3
作者 HUANG Yuancheng ZHANG Liangpei LI Pingxiang ZHONG Yanfei 《Geo-Spatial Information Science》 2010年第2期111-122,共12页
High-resolution hyper-spectral image (HHR) provides both detailed structural and spectral information for urban study. However, due to the inherent correlation between spectral bands and within-class variability in th... High-resolution hyper-spectral image (HHR) provides both detailed structural and spectral information for urban study. However, due to the inherent correlation between spectral bands and within-class variability in the data, the data processing of HHR is a challenging work. In this paper, based on spectral mixture analysis theory, a new stack of parts description features were extracted, and then incorporated with a stack of morphology based spatial features. Partially supervised constrained energy minimization (CEM) and unsupervised nonnegative matrix factorization (NMF) were used to extract the part-features. The joint features were then integrated by SVM classifier. The advantages of this method are the representation of physical composition of the urban area by the parts-features and the show of multi-scale structure information by morphology profiles. Experiments with an airborne hyper-spectral data flightline over the Washington DC Mall were performed, and the performance of the proposed algorithm was evaluated in comparison with well-known nonparametric weighted feature extraction (NWFE) and feature selection method. The results shown that the proposed features-joint scheme consistently outperforms the traditional methods, and so can provide an effective option for processing HHR data in urban area. 展开更多
关键词 parts-features CEM NMF morphology profiles hyper-spectral image urban classification
原文传递
Distance-based separability criterion of ROI in classification of farmland hyper-spectral images
4
作者 Tang Jinglei Miao Ronghui +2 位作者 Zhang Zhiyong Xin Jing Wang Dong 《International Journal of Agricultural and Biological Engineering》 SCIE EI CAS 2017年第5期177-185,共9页
The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within vario... The hyper-spectral image contains spectral and spatial information,which increases the ability and precision of objects classification.Despite the classification value of hyper-spectral imaging technology within various applications,users often find it difficult to effectively apply in practice because of the effect of light,temperature and wind in outdoor environment.This research presented a new classification model for outdoor farmland objects based on near-infrared(NIR)hyper-spectral images.It involves two steps including region of interest(ROI)acquisition and establishment of classifiers.A distance-based method for quantitative analysis was proposed to optimize the reference pixels in ROI acquisition firstly.Then maximum likelihood(ML)and support vector machine(SVM)were used for farmland objects classification.The performance of the proposed method showed that the total classification accuracy based on the reference pixels was over 97.5%,of which the SVM-M model could reach 99.5%.The research provided an effective method for outdoor farmland image classification. 展开更多
关键词 distance-based separability criterion near-infrared hyper-spectral image ROI farmland image classification
原文传递
Hydrocarbon Micro-Seepage Detection by Altered Minerals Mapping from Airborne Hyper-Spectral Data in Xifeng Oilfield,China 被引量:3
5
作者 Shengbo Chen Ying Zhao +2 位作者 Liang Zhao Yanli Liu Chao Zhou 《Journal of Earth Science》 SCIE CAS CSCD 2017年第4期656-665,共10页
Hydrocarbon micro-seepage can cause oxidation reduction reactions and produce altered minerals in surface sediments and soft. The typical altered minerals mapping by their diagnostic spectral features on hyper-spectra... Hydrocarbon micro-seepage can cause oxidation reduction reactions and produce altered minerals in surface sediments and soft. The typical altered minerals mapping by their diagnostic spectral features on hyper-spectral images is an important tool for the petroleum exploration industry. In this study, the airborne hyper-spectral data were used to investigate the altered minerals induced by hydrocarbon micro-seepages by spectral feature fitting (SFF) in the loess coverage area of Xifeng Oflfield. The results re- veal that the distribution region of the altered minerals induced by hydrocarbon micro-seepage is larger than the known oilfield exploration area. The potential hydrocarbon micro-seepage region was also re- vealed by the distribution of altered minerals besides the known hydrocarbon area. A fast index was pro- posed by the absorption depths of clay and carbonate minerals for assessment of hydrocarbon micro- seepage. And it gave much clearer boundaries for the hydrocarbon micro-seepage in the loess coverage area than those by the altered mineral mapping. In addition, some field samples were analyzed by X-ray diffrac- tion (XRD) and atomic absorption spectrophotometer to validate the results. Within the extents of hydro- carbon micro-seepage, there are lower contents of ferric iron and higher contents of carbonate minerals in these samples. Therefore, it is satisfactory to have the airborne hyper-spectral data to outline the extents of hydrocarbon micro-seepage for further hydrocarbon exploration in the loess coverage area. 展开更多
关键词 hydrocarbon micro-seepage loess coverage airborne hyper-spectral imager altered minerals mapping.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部