期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
A novel satellite-equipped receiver for autonomous monitoring of GNSS navigation signal quality 被引量:6
1
作者 YANG Jian YANG YiKang +2 位作者 LI Ji Sheng LI HengNian YANG TianShe 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2016年第7期1137-1146,共10页
Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. I... Global navigation satellite system(GNSS) comes with potential unavoidable application risks such as the sudden distortion or failure of navigation signals because its satellites are generally operated until failure. In order to solve the problems associated with these risks, receiver autonomous integrity monitoring(RAIM) and ground-based signal quality monitoring stations are widely used. Although these technologies can protect the user from the risks, they are expensive and have limited region coverage. Autonomous monitoring of satellite signal quality is an effective method to eliminate these shortcomings of the RAIM and ground-based signal quality monitoring stations; thus, a new navigation signal quality monitoring receiver which can be equipped on the satellite platform of GNSS is proposed in this paper. Because this satellite-equipped receiver is tightly coupled with navigation payload, the system architecture and its preliminary design procedure are first introduced. In theory, code-tracking loop is able to provide accurate time delay estimation of received signals. However, because of the nonlinear characteristics of the navigation payload, the traditional code-tracking loop introduces errors. To eliminate these errors, the dummy massive parallel correlators(DMPC) technique is proposed. This technique can reconstruct the cross correlation function of a navigation signal with a high code phase resolution. Combining the DMPC and direct radio frequency(RF) sampling technology, the satellite-equipped receiver can calibrate the differential code bias(DCB) accurately. In the meantime, the abnormities and failures of navigation signal can also be monitored. Finally, the accuracy of DCB calibration and the performance of fault monitoring have been verified by practical test data and numerical simulation data, respectively. The results show that the accuracy of DCB calibration is less than 0.1 ns and the novel satellite-equipped receiver can monitor the signal quality effectively. 展开更多
关键词 satellite-equipped receiver dummy massive parallel correlators(DMPC) differential code bias(DCB) signal quality monitoring
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部