期刊文献+
共找到362篇文章
< 1 2 19 >
每页显示 20 50 100
Joint computation offloading and parallel scheduling to maximize delay-guarantee in cooperative MEC systems
1
作者 Mian Guo Mithun Mukherjee +3 位作者 Jaime Lloret Lei Li Quansheng Guan Fei Ji 《Digital Communications and Networks》 SCIE CSCD 2024年第3期693-705,共13页
The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cess... The growing development of the Internet of Things(IoT)is accelerating the emergence and growth of new IoT services and applications,which will result in massive amounts of data being generated,transmitted and pro-cessed in wireless communication networks.Mobile Edge Computing(MEC)is a desired paradigm to timely process the data from IoT for value maximization.In MEC,a number of computing-capable devices are deployed at the network edge near data sources to support edge computing,such that the long network transmission delay in cloud computing paradigm could be avoided.Since an edge device might not always have sufficient resources to process the massive amount of data,computation offloading is significantly important considering the coop-eration among edge devices.However,the dynamic traffic characteristics and heterogeneous computing capa-bilities of edge devices challenge the offloading.In addition,different scheduling schemes might provide different computation delays to the offloaded tasks.Thus,offloading in mobile nodes and scheduling in the MEC server are coupled to determine service delay.This paper seeks to guarantee low delay for computation intensive applica-tions by jointly optimizing the offloading and scheduling in such an MEC system.We propose a Delay-Greedy Computation Offloading(DGCO)algorithm to make offloading decisions for new tasks in distributed computing-enabled mobile devices.A Reinforcement Learning-based Parallel Scheduling(RLPS)algorithm is further designed to schedule offloaded tasks in the multi-core MEC server.With an offloading delay broadcast mechanism,the DGCO and RLPS cooperate to achieve the goal of delay-guarantee-ratio maximization.Finally,the simulation results show that our proposal can bound the end-to-end delay of various tasks.Even under slightly heavy task load,the delay-guarantee-ratio given by DGCO-RLPS can still approximate 95%,while that given by benchmarked algorithms is reduced to intolerable value.The simulation results are demonstrated the effective-ness of DGCO-RLPS for delay guarantee in MEC. 展开更多
关键词 Edge computing Computation offloading Parallel scheduling Mobile-edge cooperation Delay guarantee
下载PDF
Improved STNModels and Heuristic Rules for Cooperative Scheduling in Automated Container Terminals
2
作者 Hongyan Xia Jin Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1637-1661,共25页
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis... Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average. 展开更多
关键词 Automated container terminal BUFFER cooperative scheduling heuristic rules space-time network
下载PDF
MANUFACTURING SYSTEM SCHEDULING BASED ON MULTI-AGENT COOPERATION GAME 被引量:1
3
作者 刘建国 张小锋 王宁生 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2007年第4期329-334,共6页
Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduli... Aiming at the flexible manufacturing system with multi-machining and multi-assembly equipment, a new scheduling algorithm is proposed to decompose the assembly structure of the products, thus obtaining simple scheduling problems and forming the cOrrespOnding agents. Then, the importance and the restriction of each agent are cOnsidered, to obtain an order of simple scheduling problems based on the cooperation game theory. With this order, the scheduling of sub-questions is implemented in term of rules, and the almost optimal scheduling results for meeting the restriction can be obtained. Experimental results verify the effectiveness of the proposed scheduling algorithm. 展开更多
关键词 manufacturing scheduling cooperation game AGENT
下载PDF
Optimization Task Scheduling Using Cooperation Search Algorithm for Heterogeneous Cloud Computing Systems 被引量:1
4
作者 Ahmed Y.Hamed M.Kh.Elnahary +1 位作者 Faisal S.Alsubaei Hamdy H.El-Sayed 《Computers, Materials & Continua》 SCIE EI 2023年第1期2133-2148,共16页
Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the ... Cloud computing has taken over the high-performance distributed computing area,and it currently provides on-demand services and resource polling over the web.As a result of constantly changing user service demand,the task scheduling problem has emerged as a critical analytical topic in cloud computing.The primary goal of scheduling tasks is to distribute tasks to available processors to construct the shortest possible schedule without breaching precedence restrictions.Assignments and schedules of tasks substantially influence system operation in a heterogeneous multiprocessor system.The diverse processes inside the heuristic-based task scheduling method will result in varying makespan in the heterogeneous computing system.As a result,an intelligent scheduling algorithm should efficiently determine the priority of every subtask based on the resources necessary to lower the makespan.This research introduced a novel efficient scheduling task method in cloud computing systems based on the cooperation search algorithm to tackle an essential task and schedule a heterogeneous cloud computing problem.The basic idea of thismethod is to use the advantages of meta-heuristic algorithms to get the optimal solution.We assess our algorithm’s performance by running it through three scenarios with varying numbers of tasks.The findings demonstrate that the suggested technique beats existingmethods NewGenetic Algorithm(NGA),Genetic Algorithm(GA),Whale Optimization Algorithm(WOA),Gravitational Search Algorithm(GSA),and Hybrid Heuristic and Genetic(HHG)by 7.9%,2.1%,8.8%,7.7%,3.4%respectively according to makespan. 展开更多
关键词 Heterogeneous processors cooperation search algorithm task scheduling cloud computing
下载PDF
No-cooperative games for multiple emergency locations in resource scheduling 被引量:1
5
作者 Yang, Jijun Xu, Weisheng +1 位作者 Wu, Qidi Wang, Guangjing 《Journal of Southeast University(English Edition)》 EI CAS 2008年第S1期88-93,共6页
When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model an... When an emergency happens, the scheduling of relief resources to multiple emergency locations is a realistic and intricate problem, especially when the available resources are limited. A non-cooperative games model and an algorithm for scheduling of relief resources are presented. In the model, the players correspond to the multiple emergency locations, strategies correspond to all resources scheduling and the payoff of each emergency location corresponds to the reciprocal of its scheduling cost. Thus, the optimal results are determined by the Nash equilibrium point of this game. Then the iterative algorithm is introduced to seek the Nash equilibrium point. Simulation and analysis are given to demonstrate the feasibility and availability of the model. 展开更多
关键词 emergency management non-cooperative games Nash equilibrium point resources scheduling
下载PDF
Competitive and Cooperative-Based Strength Pareto Evolutionary Algorithm for Green Distributed Heterogeneous Flow Shop Scheduling
6
作者 Kuihua Huang Rui Li +2 位作者 Wenyin Gong Weiwei Bian Rui Wang 《Intelligent Automation & Soft Computing》 SCIE 2023年第8期2077-2101,共25页
This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a com... This work aims to resolve the distributed heterogeneous permutation flow shop scheduling problem(DHPFSP)with minimizing makespan and total energy consumption(TEC).To solve this NP-hard problem,this work proposed a competitive and cooperative-based strength Pareto evolutionary algorithm(CCSPEA)which contains the following features:1)An initialization based on three heuristic rules is developed to generate a population with great diversity and convergence.2)A comprehensive metric combining convergence and diversity metrics is used to better represent the heuristic information of a solution.3)A competitive selection is designed which divides the population into a winner and a loser swarms based on the comprehensive metric.4)A cooperative evolutionary schema is proposed for winner and loser swarms to accelerate the convergence of global search.5)Five local search strategies based on problem knowledge are designed to improve convergence.6)Aproblem-based energy-saving strategy is presented to reduce TEC.Finally,to evaluate the performance of CCSPEA,it is compared to four state-of-art and run on 22 instances based on the Taillard benchmark.The numerical experiment results demonstrate that 1)the proposed comprehensive metric can efficiently represent the heuristic information of each solution to help the later step divide the population.2)The global search based on the competitive and cooperative schema can accelerate loser solutions convergence and further improve the winner’s exploration.3)The problembased initialization,local search,and energy-saving strategies can efficiently reduce the makespan and TEC.4)The proposed CCSPEA is superior to the state-of-art for solving DHPFSP. 展开更多
关键词 Distributed heterogeneous flow shop scheduling green scheduling SPEA2 competitive and cooperative
下载PDF
Improved Fruit Fly Optimization Algorithm for Solving Lot-Streaming Flow-Shop Scheduling Problem 被引量:2
7
作者 张鹏 王凌 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期165-170,共6页
An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to... An improved fruit fly optimization algorithm( iFOA) is proposed for solving the lot-streaming flow-shop scheduling problem( LSFSP) with equal-size sub-lots. In the proposed iFOA,a solution is encoded as two vectors to determine the splitting of jobs and the sequence of the sub-lots simultaneously. Based on the encoding scheme,three kinds of neighborhoods are developed for generating new solutions. To well balance the exploitation and exploration,two main search procedures are designed within the evolutionary search framework of the iFOA,including the neighborhood-based search( smell-vision-based search) and the global cooperation-based search. Finally,numerical testing results are provided,and the comparisons demonstrate the effectiveness of the proposed iFOA for solving the LSFSP. 展开更多
关键词 fruit fly optimization algorithm(FOA) lot-streaming flowshop scheduling job splitting neighborhood-based search cooperation-based search
下载PDF
Dynamic Resource Scheduling in Emergency Environment
8
作者 Yuankun Yan Yan Kong Zhangjie Fu 《Journal of Information Hiding and Privacy Protection》 2019年第3期143-155,共13页
Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative... Nowadays,emergency accidents could happen at any time.The accidents occur unpredictably and the accidents requirements are diversely.The accidents happen in a dynamic environment and the resource should be cooperative to solve the accidents.Most methods are focusing on minimizing the casualties and property losses in a static environment.However,they are lack in considering the dynamic and unpredictable event handling.In this paper,we propose a representative environmental model in representation of emergency and dynamic resource allocation model,and an adaptive mathematical model based on Genetic Algorithm(GA)to generate an optimal set of solution domain.The experimental results show that the proposed algorithm can get a set of better candidate solutions. 展开更多
关键词 cooperative allocation dynamic resource scheduling adaptive genetic algorithm
下载PDF
Cooperative-Guided Ant Colony Optimization with Knowledge Learning for Job Shop Scheduling Problem
9
作者 Wei Li Xiangfang Yan Ying Huang 《Tsinghua Science and Technology》 SCIE EI CAS 2024年第5期1283-1299,共17页
With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds... With the advancement of the manufacturing industry,the investigation of the shop floor scheduling problem has gained increasing importance.The Job shop Scheduling Problem(JSP),as a fundamental scheduling problem,holds considerable theoretical research value.However,finding a satisfactory solution within a given time is difficult due to the NP-hard nature of the JSP.A co-operative-guided ant colony optimization algorithm with knowledge learning(namely KLCACO)is proposed to address this difficulty.This algorithm integrates a data-based swarm intelligence optimization algorithm with model-based JSP schedule knowledge.A solution construction scheme based on scheduling knowledge learning is proposed for KLCACO.The problem model and algorithm data are fused by merging scheduling and planning knowledge with individual scheme construction to enhance the quality of the generated individual solutions.A pheromone guidance mechanism,which is based on a collaborative machine strategy,is used to simplify information learning and the problem space by collaborating with different machine processing orders.Additionally,the KLCACO algorithm utilizes the classical neighborhood structure to optimize the solution,expanding the search space of the algorithm and accelerating its convergence.The KLCACO algorithm is compared with other highperformance intelligent optimization algorithms on four public benchmark datasets,comprising 48 benchmark test cases in total.The effectiveness of the proposed algorithm in addressing JSPs is validated,demonstrating the feasibility of the KLCACO algorithm for knowledge and data fusion in complex combinatorial optimization problems. 展开更多
关键词 Ant Colony Optimization(ACO) Job shop scheduling Problem(JSP) knowledge learning cooperative guidance
原文传递
Incentive Scheme for Slice Cooperation Based on D2D Communication in 5G Networks 被引量:5
10
作者 Qian Sun Lin Tian +2 位作者 Yiqing Zhou Jinglin Shi Zongshuai Zhang 《China Communications》 SCIE CSCD 2020年第1期28-41,共14页
In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage r... In the 5th generation(5G)wireless communication networks,network slicing emerges where network operators(NPs)form isolated logical slices by the same cellular network infrastructure and spectrum resource.In coverage regions of access points(APs)shared by slices,device to device(D2D)communication can occur among different slices,i.e.,one device acts as D2D relay for another device serving by a different slice,which is defined as slice cooperation in this paper.Since selfish slices will not help other slices by cooperation voluntarily and unconditionally,this paper designs a novel resource allocation scheme to stimulate slice cooperation.The main idea is to encourage slice to perform cooperation for other slices by rewarding it with higher throughput.The proposed incentive scheme for slice cooperation is formulated by an optimal problem,where cooperative activities are introduced to the objective function.Since optimal solutions of the formulated problem are long term statistics,though can be obtained,a practical online slice scheduling algorithm is designed,which can obtain optimal solutions of the formulated maximal problem.Lastly,the throughput isolation indexes are defined to evaluate isolation performance of slice.According to simulation results,the proposed incentive scheme for slice cooperation can stimulate slice cooperation effectively,and the isolation of slice is also simulated and discussed. 展开更多
关键词 slice cooperation incentive cooperation resource allocation for slice slice scheduling wireless communication networks
下载PDF
An Iterated Greedy Algorithm with Memory and Learning Mechanisms for the Distributed Permutation Flow Shop Scheduling Problem
11
作者 Binhui Wang Hongfeng Wang 《Computers, Materials & Continua》 SCIE EI 2025年第1期371-388,共18页
The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because o... The distributed permutation flow shop scheduling problem(DPFSP)has received increasing attention in recent years.The iterated greedy algorithm(IGA)serves as a powerful optimizer for addressing such a problem because of its straightforward,single-solution evolution framework.However,a potential draw-back of IGA is the lack of utilization of historical information,which could lead to an imbalance between exploration and exploitation,especially in large-scale DPFSPs.As a consequence,this paper develops an IGA with memory and learning mechanisms(MLIGA)to efficiently solve the DPFSP targeted at the mini-malmakespan.InMLIGA,we incorporate a memory mechanism to make a more informed selection of the initial solution at each stage of the search,by extending,reconstructing,and reinforcing the information from previous solutions.In addition,we design a twolayer cooperative reinforcement learning approach to intelligently determine the key parameters of IGA and the operations of the memory mechanism.Meanwhile,to ensure that the experience generated by each perturbation operator is fully learned and to reduce the prior parameters of MLIGA,a probability curve-based acceptance criterion is proposed by combining a cube root function with custom rules.At last,a discrete adaptive learning rate is employed to enhance the stability of the memory and learningmechanisms.Complete ablation experiments are utilized to verify the effectiveness of the memory mechanism,and the results show that this mechanism is capable of improving the performance of IGA to a large extent.Furthermore,through comparative experiments involving MLIGA and five state-of-the-art algorithms on 720 benchmarks,we have discovered that MLI-GA demonstrates significant potential for solving large-scale DPFSPs.This indicates that MLIGA is well-suited for real-world distributed flow shop scheduling. 展开更多
关键词 Distributed permutation flow shop scheduling makespan iterated greedy algorithm memory mechanism cooperative reinforcement learning
下载PDF
考虑多重不确定性与电碳耦合交易的多微网合作博弈优化调度 被引量:1
12
作者 董雷 李扬 +2 位作者 陈盛 乔骥 蒲天骄 《电工技术学报》 EI CSCD 北大核心 2024年第9期2635-2651,共17页
双碳背景下,构建低碳运行的能源系统是实现“双碳”目标的重要方向与实施路径。为了促进多微网系统内部能源的本地消纳以及低碳经济运行,该文对不确定性环境下多微网系统的合作运行及电碳耦合交易展开研究。首先,对于每个微网,构建了电... 双碳背景下,构建低碳运行的能源系统是实现“双碳”目标的重要方向与实施路径。为了促进多微网系统内部能源的本地消纳以及低碳经济运行,该文对不确定性环境下多微网系统的合作运行及电碳耦合交易展开研究。首先,对于每个微网,构建了电转气碳捕集系统相耦合的热电联产运行模式,基于地方碳交易市场和阶梯碳交易机制,提出了多能源微网的低碳运行模型;其次,考虑到新能源发电和电力市场电价都存在不确定性的实际情况,采用机会约束和鲁棒优化的方法,以降低不确定性影响;再次,基于纳什谈判理论,建立了多个微网电碳耦合的合作博弈模型,各微网主体可同时参与到上级能源市场和地方能源市场中进行电能和碳排放配额的交易;最后,将非凸的合作博弈问题分解为两个线性可求解的子问题,进一步采用交替方向乘子法对问题进行求解。通过算例验证,该文所提方法可以有效提升各微网经济效益并减少碳排放。 展开更多
关键词 电碳耦合交易 纳什谈判 合作博弈 多微网优化调度
下载PDF
基于灵活运行域的配-微电网协同优化调度方法
13
作者 卫志农 刘鹏 +3 位作者 陈胜 赵景涛 郑舒 张晓燕 《电力自动化设备》 EI CSCD 北大核心 2024年第12期213-220,共8页
为了提高配电网与微电网间的协调能力,提出了基于灵活运行域的配-微电网协同优化调度方法。构建微电网灵活运行域(MGFOR)模型,准确刻画海量灵活性资源接入下微电网的灵活调节能力;采用基于MGFOR的凸包拟合表达式对微电网的灵活调节能力... 为了提高配电网与微电网间的协调能力,提出了基于灵活运行域的配-微电网协同优化调度方法。构建微电网灵活运行域(MGFOR)模型,准确刻画海量灵活性资源接入下微电网的灵活调节能力;采用基于MGFOR的凸包拟合表达式对微电网的灵活调节能力进行描述,并将其纳入配电网的优化决策过程中,以获取配-微电网协同过程中各微电网的基准运行点;微电网基于配电网优化决策给定的基准运行点进行灵活性分解,在保证配-微电网协同运行经济性和数据隐私的前提下获取各灵活性资源的具体调度策略。以修改的IEEE 33节点测试系统为算例进行仿真分析,验证所提方法能够准确刻画微电网的灵活调节能力,所提基于MGFOR的分解协同策略能够有效支撑配-微电网灵活经济调度。 展开更多
关键词 配-微电网协同 灵活运行域 凸包理论 经济调度 灵活性聚合-分解
下载PDF
基于储能和水电调节的跨区风光水联合优化调度策略
14
作者 李咸善 卢嘉琛 钟浩 《三峡大学学报(自然科学版)》 CAS 北大核心 2024年第4期85-95,共11页
针对大规模新能源经特高压直流通道跨区并网消纳,在送端采用储能调节满足直流通道直线化功率传输等约束的同时,如何减小风光入网扰动度问题;在受端采用水电调节满足风光水跟踪电网负荷变化趋势,如何解决水电调节的利益受损问题,构建了... 针对大规模新能源经特高压直流通道跨区并网消纳,在送端采用储能调节满足直流通道直线化功率传输等约束的同时,如何减小风光入网扰动度问题;在受端采用水电调节满足风光水跟踪电网负荷变化趋势,如何解决水电调节的利益受损问题,构建了风光水跨区域联合运行的三阶段调度模型.首先,在送端基于储能调节,构建了考虑受端电网净负荷变化趋势的风光功率直线化分段调节多目标优化模型;其次,在受端基于梯级水电调节,实现风光水联合功率跟踪电网负荷变化,构建受端电网与风光水联盟主从博弈模型,优化电网电价和联盟售电计划;最后,构建了基于纳什谈判的联盟利润分配模型,实现合作后各成员利润较合作前得到提升,维系联盟合作机制的稳定.仿真算例结果表明,采用本文方法可有效提升调节资源利用效率,保证水电调节利益,促进新能源消纳. 展开更多
关键词 优化调度 跨区域新能源消纳 储能 梯级水电 协同调节
下载PDF
计及碳配额的电动公交车⁃配电网协同优化调度策略
15
作者 张良 黄久鸿 +3 位作者 戚佳金 尹清波 龙彦良 张超锐 《电力系统自动化》 EI CSCD 北大核心 2024年第12期48-57,共10页
考虑个人碳交易机制在电动公交车优化调度中的应用,提出一种基于动态碳价格的碳配额激励机制,电动公交车用户可以通过出售碳配额获取一定的收益。首先,计及路况对电动公交车运行时间产生的影响,根据工作日与休息日交通指数对电动公交车... 考虑个人碳交易机制在电动公交车优化调度中的应用,提出一种基于动态碳价格的碳配额激励机制,电动公交车用户可以通过出售碳配额获取一定的收益。首先,计及路况对电动公交车运行时间产生的影响,根据工作日与休息日交通指数对电动公交车进站时间进行修正,构建电动公交车工作日与休息日充电负荷模型;然后,将基于动态碳价格的碳配额激励机制运用于电动公交车与新能源协同调度策略,构建综合考虑用户与电网利益的多目标函数,并运用鲸鱼算法对目标函数进行求解;最后,基于经济指标和性能指标,对固定碳价格、动态碳价格两种激励机制进行对比分析,通过算例验证了基于动态碳价格的碳配额激励机制的电动公交车与新能源协同调度策略的优越性。 展开更多
关键词 配电网 电动公交车 碳配额 激励机制 协同优化调度
下载PDF
低碳综合能源系统研究框架与关键问题研究综述
16
作者 袁越 苗安康 +3 位作者 吴涵 朱俊澎 王作民 钱康 《高电压技术》 EI CAS CSCD 北大核心 2024年第9期4019-4036,I0020,共19页
低碳综合能源系统是融合多种低碳技术和措施、集成灵活性资源、促进清洁能源消纳、降低碳排放的多能源系统,是实现“双碳”目标的物理载体。首先,从能源转型的宏观战略、物理载体和低碳技术角度论证了低碳综合能源系统是能源转型的有效... 低碳综合能源系统是融合多种低碳技术和措施、集成灵活性资源、促进清洁能源消纳、降低碳排放的多能源系统,是实现“双碳”目标的物理载体。首先,从能源转型的宏观战略、物理载体和低碳技术角度论证了低碳综合能源系统是能源转型的有效路径,归纳了低碳综合能源系统的定义与特征内涵;然后,构建了低碳综合能源系统的研究框架,从源-网-荷-储及碳捕集等环节挖掘了低碳综合能源系统的减排潜力;为了充分发挥低碳综合能源系统的低碳优势,从协同规划与优化调度、市场机制等角度提炼了低碳综合能源系统的几个关键问题;最后,聚焦提炼的协同优化关键问题,从研究现状、面临问题和研究展望等方面进行了阐述,以期为能源系统的低碳发展提供参考。 展开更多
关键词 “双碳” 低碳综合能源系统 低碳研究框架 减排潜力 关键问题 协同规划与调度
下载PDF
结合遗传算子的并行萤火虫算法及在车间调度中的应用
17
作者 周艳平 刘永娟 《计算机与数字工程》 2024年第5期1388-1393,共6页
论文提出了一种结合遗传算子的并行萤火虫算法,该算法借鉴了萤火虫闪烁移动的思想,对两个种群进行同步并行迭代求解,以提升算法的求解速度和质量;在其中一个种群中引入多尺度协同变异算子,利用不同大小方差的自适应高斯变异机制使整个... 论文提出了一种结合遗传算子的并行萤火虫算法,该算法借鉴了萤火虫闪烁移动的思想,对两个种群进行同步并行迭代求解,以提升算法的求解速度和质量;在其中一个种群中引入多尺度协同变异算子,利用不同大小方差的自适应高斯变异机制使整个种群以尽量分散的变异尺度来对解空间进行更详尽的探索,从而使整个种群进行有效变异。函数优化结果表明了该算法的有效性,该算法用于求解以最小化最大完工时间为优化目标的流水车间调度问题,实验结果表明,较传统的单一算法而言,结合遗传算子的并行萤火虫算法在求解车间调度问题方面具有更好的性能。 展开更多
关键词 萤火虫算法 多尺度协同变异算子 并行算法 流水车间调度
下载PDF
基于全局向局部运行空间投影的多级调度协同模式 被引量:2
18
作者 张怀宇 夏清 +4 位作者 张丙金 谭振飞 董成 孙宇军 赖晓文 《电力系统自动化》 EI CSCD 北大核心 2024年第11期143-152,共10页
随着电力市场改革的推进,华东区域各省级市场均已进入试运行阶段,为统筹兼顾现货市场平稳运营与区域电网安全运行,迫切需要研究更高效的网省协同运行机制。首先,分析了现货市场环境下网省调度协同模式的挑战与改进思路。然后,构建了区... 随着电力市场改革的推进,华东区域各省级市场均已进入试运行阶段,为统筹兼顾现货市场平稳运营与区域电网安全运行,迫切需要研究更高效的网省协同运行机制。首先,分析了现货市场环境下网省调度协同模式的挑战与改进思路。然后,构建了区域电网调度可行域与省市调度可行域模型,提出可行域模型的降维与线性化处理方法。在此基础上,提出了基于调度可行域的网省协同优化运行机制,重点对网省两级协同运行的业务流程、省市可行域的计算方法进行了探讨。最后,通过区域电网的算例分析,验证了调度可行域模型与两级市场协同运行机制的有效性。 展开更多
关键词 电力市场 可行域 机组组合 安全校核 市场出清 网省协同 调度
下载PDF
基于改进Shapley值法的风-光-水-储多主体互补发电系统合作增益分配策略 被引量:1
19
作者 段佳南 谢俊 +2 位作者 赵心怡 常逸凡 葛远裕 《电力自动化设备》 EI CSCD 北大核心 2024年第3期22-30,共9页
为了充分发挥系统中可调节资源的自身优势,利用变速抽水蓄能机组配合小水电机组进行常规调节,并考虑变速抽水蓄能机组的快速响应特性,提出了兼顾系统小时级以及秒级安全性的风-光-水-储多主体互补发电系统的联合优化调度模型。为了降低... 为了充分发挥系统中可调节资源的自身优势,利用变速抽水蓄能机组配合小水电机组进行常规调节,并考虑变速抽水蓄能机组的快速响应特性,提出了兼顾系统小时级以及秒级安全性的风-光-水-储多主体互补发电系统的联合优化调度模型。为了降低合作博弈高效性算法线性增长的计算复杂度,基于改进Shapely值法提出了一种大规模利益主体的合作增量效益(增益)分配策略。通过资源聚合,对高维度问题进行降维处理,利用Shapley值法进行初始分配;构建合作增益贡献指标,采用非对称纳什谈判理论对同类型的不同主体进行细化分配。以某流域风-光-水-储10主体互补发电系统为仿真算例,结果表明:抽水蓄能机组与小水电机组互补运行可以提升系统的灵活性和安全性;基于改进Shapley值法的合作增益分配策略具有计算高效性以及应用可行性。 展开更多
关键词 风-光-水-储多主体互补发电系统 短期调度 合作博弈论 合作增益分配 改进Shapley值法 非对称纳什谈判理论
下载PDF
基于深度强化学习的收割机省内协同调度优化策略
20
作者 李子康 张璠 +3 位作者 滕桂法 李政 王梓怡 马世纪 《农业工程学报》 EI CAS CSCD 北大核心 2024年第14期23-32,共10页
针对目前多机多地块间调度作业存在效率低、成本高等问题,该研究构建了以收割机地块间转移成本最小为目标的协同调度模型,设计了基于深度强化学习的收割机协同调度优化算法(inter-regional collaborative optimization scheduling algor... 针对目前多机多地块间调度作业存在效率低、成本高等问题,该研究构建了以收割机地块间转移成本最小为目标的协同调度模型,设计了基于深度强化学习的收割机协同调度优化算法(inter-regional collaborative optimization scheduling algorithm based on deep reinforcement learning,DRL-ICOSA)。首先分析收割机调度作业的马尔可夫决策过程,构建基于注意力机制的策略网络和价值网络,在随机采样策略中引入动态高斯噪声,以避免训练初期陷入局部最优,同时提高网络模型的鲁棒性;接着采用近端策略优化算法(proximal policy optimization,PPO)训练网络模型;最后利用测试集验证DRL-ICOSA算法,得到收割机优化调度方案。基于有效作业时长40和24 h、农机调度中心位于作业区域中心和区域边缘的4种组合作业场景下,采用DRL-ICOSA算法、遗传算法(genetic algorithm,GA)、粒子群算法(particle swarm optimization,PSO)和模拟退火算法(simulated annealing,SA)计算调度策略并进行对比分析。试验结果表明:当调度中心位于区域中心或边缘时,有效作业时长为40 h,DRL-ICOSA算法相较于GA、PSO和SA算法,平均调度成本降幅不少于13.9%;有效作业时长为24 h,平均调度成本降幅不少于11.5%。当作业时长为40或24 h时,调度中心位于区域中心,DRL-ICOSA算法相较于GA、PSO和SA算法,平均调度成本降幅不少于12.3%;调度中心位于区域边缘时,DRL-ICOSA算法相较于GA、PSO和SA算法,平均调度降幅不低于11.5%。因此,有效作业时长为40或24 h、调度中心位于区域中心或边缘时,相比其他3种算法,DRL-ICOSA算法均能计算得到最低的调度成本。这一研究结果可为收割机省内协同作业提供科学合理的调度方案。 展开更多
关键词 农业机械 优化算法 路径规划 深度强化学习 协同调度
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部