Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. He...Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.展开更多
A method is proposed to measure the process margin of the main steam inlet and outlet pipe of a nuclear power plant by using an industrial photogrammetry system. This method includes steps of preparation,image acquisi...A method is proposed to measure the process margin of the main steam inlet and outlet pipe of a nuclear power plant by using an industrial photogrammetry system. This method includes steps of preparation,image acquisition,image processing,and result analysis,as well as the final processing margin analysis,and so on. In particular,it suggests a specific method for target-point layout and design of shooting network for the main steam inlet and outlet pipe measurement,and then uses a method of sub-section photography and collation to measure the inner and outer surfaces of the nuclear power interface pipe. The machining tolerance analysis shows that the method can effectively test whether the machining tolerance data of the interface pipe's top surface,outer surface and the inner surface reach a critical value,which provides a reliable reference for the next step in this process,and it is a type of machining tolerance detection method worthy of popularisation.展开更多
针对馈线自动化的功能测试问题,为避免配电终端接入实际配电网进行测试实验可能对电力系统的安全运行造成不利影响,同时为了提高测试的灵活性、效率性和正确性,文中提出了一种虚实结合的馈线自动化测试方法,利用RTLAB(Real Time Laborat...针对馈线自动化的功能测试问题,为避免配电终端接入实际配电网进行测试实验可能对电力系统的安全运行造成不利影响,同时为了提高测试的灵活性、效率性和正确性,文中提出了一种虚实结合的馈线自动化测试方法,利用RTLAB(Real Time Laboratory)实时全数字仿真器搭建配电网并模拟故障运行,设计具备保护、重合闸、就地式FA(Feeder Automation)功能的仿真型虚拟配电终端用于开展RTLAB实时仿真器与物理模型硬件在环仿真研究。文中设计的基于高性能线性功率放大器的接口实施方案被测配电终端接入测试系统形成闭环,构建了虚实结合的馈线自动化仿真测试环境。通过开展基本故障处理能力测试和容错能力测试的硬件在环仿真实验,验证了接口装置的准确性,同时验证了测试平台的有效性。展开更多
Highly stable ZnO varistor ceramics with steadily decreasing power loss have been put into applications in electrical and electronic systems for overvoltage protections, even with the absence of general understandings...Highly stable ZnO varistor ceramics with steadily decreasing power loss have been put into applications in electrical and electronic systems for overvoltage protections, even with the absence of general understandings on their aging behaviors. In this paper, we investigated their aging nature via conducting comparative direct current (DC) aging experiments both in air and in nitrogen, during which variations of electrical properties and interface properties were measured and analyzed. Notably, continuously increasing power loss with severe electrical degradation was observed for the sample aged in nitrogen. The power loss transition was discovered to be closely related to the consumption of oxygen adsorption at the grain boundary (GB), which could, however, remain constant for the sample aged in air. The interface density of states (DOS) Ni, which is crucial for pinning the potential barrier, was proved to decrease in nitrogen, but keep stable in air. Therefore, it is concluded that the oxygen adsorption at the GB is significant for the stability of interface states, which further correlates to the long-term stability of modern stable ZnO varistor ceramics.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
基金supported by the National Natural Science Foundation of China (62075006)the National Key R&D Program of China (2018YFB1500200)。
文摘Interface engineering is proved to be the most important strategy to push the device performance of the perovskite solar cell(PSC) to its limit, and numerous works have been conducted to screen efficient materials. Here, on the basis of the previous studies, we employ machine learning to map the relationship between the interface material and the device performance, leading to intelligently screening interface materials towards minimizing voltage losses in p-i-n type PSCs. To enhance the explainability of the machine learning models, molecular descriptors are used to represent the materials. Furthermore,experimental analysis with different characterization methods and device simulation based on the drift-diffusion physical model are conducted to get physical insights and validate the machine learning models. Accordingly, 3-thiophene ethylamine hydrochloride(Th EACl) is screened as an example, which enables remarkable improvements in VOCand PCE of the PSCs. Our work reveals the critical role of datadriven analysis in the high throughput screening of interface materials, which will significantly accelerate the exploration of new materials for high-efficiency PSCs.
基金Supported by the National Natural Science Foundation of China(No.41301598)the Open Fund Program of Henan Engineering Laboratory of Pollution Control and Coal Chemical Resource Comprehensive Utilization(No.502002-B07,502002-A-04)
文摘A method is proposed to measure the process margin of the main steam inlet and outlet pipe of a nuclear power plant by using an industrial photogrammetry system. This method includes steps of preparation,image acquisition,image processing,and result analysis,as well as the final processing margin analysis,and so on. In particular,it suggests a specific method for target-point layout and design of shooting network for the main steam inlet and outlet pipe measurement,and then uses a method of sub-section photography and collation to measure the inner and outer surfaces of the nuclear power interface pipe. The machining tolerance analysis shows that the method can effectively test whether the machining tolerance data of the interface pipe's top surface,outer surface and the inner surface reach a critical value,which provides a reliable reference for the next step in this process,and it is a type of machining tolerance detection method worthy of popularisation.
文摘针对馈线自动化的功能测试问题,为避免配电终端接入实际配电网进行测试实验可能对电力系统的安全运行造成不利影响,同时为了提高测试的灵活性、效率性和正确性,文中提出了一种虚实结合的馈线自动化测试方法,利用RTLAB(Real Time Laboratory)实时全数字仿真器搭建配电网并模拟故障运行,设计具备保护、重合闸、就地式FA(Feeder Automation)功能的仿真型虚拟配电终端用于开展RTLAB实时仿真器与物理模型硬件在环仿真研究。文中设计的基于高性能线性功率放大器的接口实施方案被测配电终端接入测试系统形成闭环,构建了虚实结合的馈线自动化仿真测试环境。通过开展基本故障处理能力测试和容错能力测试的硬件在环仿真实验,验证了接口装置的准确性,同时验证了测试平台的有效性。
基金supported by the National Natural Science Foundation of China(Nos.51937008,52107027,and 52207022)the China Postdoctoral Science Foundation(No.2022M722513)State Key Laboratory of Electrical Insulation and Power Equipment(Nos.EIPE22113 and EIPE22310).
文摘Highly stable ZnO varistor ceramics with steadily decreasing power loss have been put into applications in electrical and electronic systems for overvoltage protections, even with the absence of general understandings on their aging behaviors. In this paper, we investigated their aging nature via conducting comparative direct current (DC) aging experiments both in air and in nitrogen, during which variations of electrical properties and interface properties were measured and analyzed. Notably, continuously increasing power loss with severe electrical degradation was observed for the sample aged in nitrogen. The power loss transition was discovered to be closely related to the consumption of oxygen adsorption at the grain boundary (GB), which could, however, remain constant for the sample aged in air. The interface density of states (DOS) Ni, which is crucial for pinning the potential barrier, was proved to decrease in nitrogen, but keep stable in air. Therefore, it is concluded that the oxygen adsorption at the GB is significant for the stability of interface states, which further correlates to the long-term stability of modern stable ZnO varistor ceramics.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.