期刊文献+
共找到44,926篇文章
< 1 2 250 >
每页显示 20 50 100
The First Verification Test of Space-Ground Collaborative Intelligence via Cloud-Native Satellites
1
作者 Wang Shangguang Zhang Qiyang +2 位作者 Xing Ruolin Qi Fei Xu Mengwei 《China Communications》 SCIE CSCD 2024年第4期208-217,共10页
Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on be... Recent advancements in satellite technologies and the declining cost of access to space have led to the emergence of large satellite constellations in Low Earth Orbit(LEO).However,these constellations often rely on bent-pipe architecture,resulting in high communication costs.Existing onboard inference architectures suffer from limitations in terms of low accuracy and inflexibility in the deployment and management of in-orbit applications.To address these challenges,we propose a cloud-native-based satellite design specifically tailored for Earth Observation tasks,enabling diverse computing paradigms.In this work,we present a case study of a satellite-ground collaborative inference system deployed in the Tiansuan constellation,demonstrating a remarkable 50%accuracy improvement and a substantial 90%data reduction.Our work sheds light on in-orbit energy,where in-orbit computing accounts for 17%of the total onboard energy consumption.Our approach represents a significant advancement of cloud-native satellite,aiming to enhance the accuracy of in-orbit computing while simultaneously reducing communication cost. 展开更多
关键词 cloud-native satellite orbital edge computing satellite inference verification test
下载PDF
Perception of fundamental science to boost lithium metal anodes toward practical application
2
作者 Jinkun Wang Li Wang +2 位作者 Hong Xu Li Sheng Xiangming He 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第3期454-472,共19页
As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electr... As a key material for lithium metal batteries(LMBs),lithium metal is one of the most promising anode materials to break the bottleneck of battery energy density and a commonly used active material for reference electrodes.Although lithium anodes are regarded as the holy grail of lithium batteries,decades of exploration have not led to the successful commercialization of LMBs,due mainly to the challenges related to the inherent properties of lithium metal.To pave the way for further investigation,herein,a comprehensive review focusing on the fundamental science of lithium are provided.Firstly,the natures of lithium atoms and their isotopes,lithium clusters and lithium crystals are revisited,especially their structural and energetic properties.Subsequently,the electrochemical properties of lithium metal are reviewed.Numerous important concepts and scientific questions,including the electronic structure of lithium,influence of high pressure and low temperature on the properties of lithium,factors influencing lithium deposition,generation of lithium dendrites,and electrode potential of lithium in different electrolytes,are explained and analyzed in detail.Approaches to improve the performance of lithium anodes and thoughtfulness about the electrode potential in lithium battery research are proposed. 展开更多
关键词 LITHIUM CLUSTER Crystal Physicochemical property fundamental science
下载PDF
New Approach to Synchronize General Relativity and Quantum Mechanics with Constant “K”-Resulting Dark Matter as a New Fundamental Force Particle
3
作者 Siva Prasad Kodukula 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第1期292-302,共11页
Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction a... Planck scale plays a vital role in describing fundamental forces. Space time describes strength of fundamental force. In this paper, Einstein’s general relativity equation has been described in terms of contraction and expansion forces of space time. According to this, the space time with Planck diameter is a flat space time. This is the only diameter of space time that can be used as signal transformation in special relativity. This space time diameter defines the fundamental force which belongs to that space time. In quantum mechanics, this space time diameter is only the quantum of space which belongs to that particular fundamental force. Einstein’s general relativity equation and Planck parameters of quantum mechanics have been written in terms of equations containing a constant “K”, thus found a new equation for transformation of general relativity space time in to quantum space time. In this process of synchronization, there is a possibility of a new fundamental force between electromagnetic and gravitational forces with Planck length as its space time diameter. It is proposed that dark matter is that fundamental force carrying particle. By grand unification equation with space-time diameter, we found a coupling constant as per standard model “α<sub>s</sub>” for that fundamental force is 1.08 × 10<sup>-23</sup>. Its energy calculated as 113 MeV. A group of experimental scientists reported the energy of dark matter particle as 17 MeV. Thorough review may advance science further. 展开更多
关键词 General Relativity Quantum Mechanics Space Time Dark Matter A New fundamental Constant “K”
下载PDF
Frame Length Dependency for Fundamental Frequency Extraction in Noisy Speech
4
作者 Md. Saifur Rahman Any Chowdury +2 位作者 Nargis Parvin Arpita Saha Moinur Rahman 《Journal of Signal and Information Processing》 2024年第1期1-17,共17页
The fundamental frequency plays a significant part in understanding and perceiving the pitch of a sound. The pitch is a fundamental attribute employed in numerous speech-related works. For fundamental frequency extrac... The fundamental frequency plays a significant part in understanding and perceiving the pitch of a sound. The pitch is a fundamental attribute employed in numerous speech-related works. For fundamental frequency extraction, several algorithms have been developed which one to use relies on the signal’s characteristics and the surrounding noise. Thus, the algorithm’s noise resistance becomes more critical than ever for precise fundamental frequency estimation. Nonetheless, numerous state-of-the-art algorithms face struggles in achieving satisfying outcomes when confronted with speech recordings that are noisy with low signal-to-noise ratio (SNR) values. Also, most of the recent techniques utilize different frame lengths for pitch extraction. From this point of view, This research considers different frame lengths on male and female speech signals for fundamental frequency extraction. Also, analyze the frame length dependency on the speech signal analytically to understand which frame length is more suitable and effective for male and female speech signals specifically. For the validation of our idea, we have utilized the conventional autocorrelation function (ACF), and state-of-the-art method BaNa. This study puts out a potent idea that will work better for speech processing applications in noisy speech. From experimental results, the proposed idea represents which frame length is more appropriate for male and female speech signals in noisy environments. 展开更多
关键词 Pitch Estimation fundamental Frequency BaNa ACF Frame Length
下载PDF
Seismology in the Light of Fundamental Sciences
5
作者 Bychkov Serguei 《Open Journal of Earthquake Research》 2024年第1期84-112,共29页
According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks... According to the definition, seismology is a science that studies the processes and causes of seismic phenomena and the structure of the Earth, i.e. a scientific discipline that studies the movement of blocks of rocks of the Earth’s crust and mantle and related phenomena. Seismology conducts research in the following areas and is designed to scientifically explain two main issues: 1) Study of the nature of seismic phenomena and the internal structure of the Earth. Why, how and where do seismic impacts occur? 2) Protecting humanity from the catastrophic consequences of seismic events. Is it possible to predict seismic impacts? Like any other scientific discipline, seismology is obliged to follow the laws of science and its fundamental principles. This article is devoted to the description of violations of the fundamental laws of science committed by seismologists in the study of seismic processes and raises the question of compliance of the stated research directions with the current level of development of sciences. Answering point No. 1, regarding the structure of the Earth, it is possible to recognize some successes of seismology, which nevertheless cause great doubts in the scientific community of geophysicists, because if the stratigraphic data of ultra-deep wells often refute [1] the conclusions made by seismologists on the structure of the Earth’s crust at shallow depth, then to assert something unambiguously about the structure of the mantle and at the present stage, seismology cannot. Answering the main questions of seismology, why seismic phenomena occur, and how earthquake energy is formed, seismologists have not had, and have not. Answering point No. 2, we can confidently say that in the matter of forecasting seismic phenomena, seismology has not advanced one iota over the past century, and as seismologists have been confused in the search for earthquake prediction algorithms, they are also confused without any hope of success. All that modern seismology can “boast” is the theory of Elastic recoil [2], the absurdity of which does not cause any doubt among the progressive part of geophysicists. But, the fact that most of the leading scientists-seismologists continue to piously believe the conclusions of the Elastic Recoil theory puts seismology in a humiliating position, because Mr. Reid’s theory is the clearest example of a false theory based on scientific incompetence of scientists, a model of brazen violation of the fundamental laws of science and the foundation of false and ignorant conclusions. Based on the results achieved, or rather on their absence, we regret to draw a sad conclusion: modern seismology is in the deepest decline, the cause of which is the incompetence of researchers as a result of their catastrophically low level of academic training, who stuff the scientific community with scientific geophysical rubbish, breeding similar ignoramuses in seismology. We understand that by asserting this, we offend most seismologists, but it is impossible to continue to tolerate this state of affairs in geophysics, because: “Amicus plato, sed magis amica est veritas.” Obviously, the time has come for a new meteorologist, Alfred Wagener [3], who will come and teach seismologists not to guess on coffee grounds, but to investigate seismic processes using the fundamental laws of science. In this article, we not only investigate the reasons for the unsatisfactory state of affairs in seismology, but also give our answers to the questions, of why earthquakes occur and how seismic energy is formed. 展开更多
关键词 SEISMOLOGY EARTHQUAKE fundamental Laws of Science
下载PDF
Development of Integrated and Intelligent Geodetic and Photogrammetry Satellites with Corresponding Key Technologies 被引量:1
6
作者 Yuanxi YANG Xia REN Jianrong WANG 《Journal of Geodesy and Geoinformation Science》 CSCD 2023年第4期3-12,共10页
Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.I... Aerospace surveying and mapping has become the main method of global earth observation.It can be divided into the geodetic observation satellites and the topographic surveying satellites according to the disciplines.In this paper,the geodetic satellites and photographic satellites are introduced respectively.Then,the existing problems in Chinese earth observation satellites are analyzed,and the comprehensive satellite with integrated payloads,the intensive microsatellite constellation and the intelligent observation satellite are proposed as three different development ideas for the future earth observation satellites.The possibility of the three ideas is discussed in detail,as well as the related key technologies. 展开更多
关键词 aerospace surveying and mapping gravity satellite magnetic satellite optical mapping satellite microwave mapping satellite microsatellite networking intelligent satellite observation
下载PDF
Influence of Solar Activity on Precise Orbit Prediction of LEO Satellites
7
作者 Jun-Jun Yuan Shan-Shi Zhou +4 位作者 Cheng-Pan Tang Bin Wu Kai Li Xiao-Gong Hu Er-Tao Liang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第4期56-65,共10页
The perturbations of low earth orbit(LEO)satellites operating in the orbit of 300~2000 km are complicated.In particular,the atmospheric drag force and solar radiation pressure force change rapidly over a short period ... The perturbations of low earth orbit(LEO)satellites operating in the orbit of 300~2000 km are complicated.In particular,the atmospheric drag force and solar radiation pressure force change rapidly over a short period of time due to solar activities.Using spaceborne global positioning system(GPS)data of the CHAMP,GRACE and SWARM satellites from 2002 to 2020,this paper studies in depth the influence of solar activity on LEO satellites’precise orbit prediction by performing a series of orbit prediction experiments.The quality of GPS data is more susceptible to being influenced by solar activity during years when this activity is high and the changes in dynamic parameters are consistent with those of solar activity.The effects of solar activity on LEO orbit prediction accuracy are analyzed by comparing the predicted orbits with the precise ones.During years of high solar activity,the average root-mean-squares prediction errors at 10,20,and 30 minutes are 0.15,0.20,and 0.26 m,respectively,which are larger than the corresponding values in low-solar-activity years by 59%,63%,and 68%,respectively.These results demonstrate that solar activity has a great influence on the orbit prediction accuracy,especially during high-solar-activity years.We should strengthen the real-time monitoring of solar activity and geomagnetic activity,and formulate corresponding orbit prediction strategies for the active solar period. 展开更多
关键词 SUN activity-atmospheric effects-space vehicles instruments-planets and satellites atmospheres-planets and satellites dynamical evolution and stability-planets and satellites fundamental parameters
下载PDF
PyMsOfa:A Python Package for the Standards of Fundamental Astronomy(SOFA)Service
8
作者 Jianghui Ji Dongjie Tan +4 位作者 Chunhui Bao Xiumin Huang Shoucun Hu Yao Dong Su Wang 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2023年第12期184-189,共6页
The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRA... The Standards of Fundamental Astronomy(SOFA)is a service provided by the International Astronomical Union that offers algorithms and software for astronomical calculations,which was released in two versions for FORTRAN77 and ANSI C,respectively.In this work,we implement the Python package PyMsOfa for SOFA service by three ways:(1)a Python wrapper package based on a foreign function library for Python(ctypes),(2)a Python wrapper package with the foreign function interface for Python calling C code(cffi)and(3)a Python package directly written in pure Python codes from SOFA subroutines.The package PyMsOfa has fully implemented 247 functions of the original SOFA routines released on 2023 October 11.In addition,PyMsOfa is also extensively examined,which is exactly consistent with those test examples given by the original SOFA.This Python package can be suitable to not only the astrometric detection of habitable planets from the Closeby Habitable Exoplanet Survey mission,but also for the frontier themes of black holes and dark matter related to astrometric calculations and other fields.The source codes are available via http://pypi.org/project/PyMsOfa/and https://github.com/CHES2023/PyMsOfa. 展开更多
关键词 Astrometry and Celestial Mechanics-planets and satellites detection-planets and satellites terrestrial planets
下载PDF
Fundamental Physical Constants and Primary Physical Parameters
9
作者 Vladimir S. Netchitailo 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2023年第1期190-209,共20页
Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, ... Every four years the Committee on Data for Science and Technology (CODATA) supplies a self-consistent set of values of the basic constants and conversion factors of physics recommended for international use. In 2013, the World-Universe Model (WUM) proposed a principally different depiction of the World as an alternative to the picture of the Big Bang Model. This article: 1) Gives the short history of Classical Physics before Special Relativity;2) Calculates Fundamental Physical Constants based on experimentally measured Rydberg constant, Electrodynamic constant, Electron Charge-to-Mass Ratio, and Planck constant;3) Discusses Electrodynamic constant and Speed of Light;4) Considers Dimensionless Fundamental Parameters (Dirac Large Number Q and Dimensionless Rydberg Constant α);5) Calculates Newtonian Constant of Gravitation based on the Inter-connectivity of Primary Physical Parameters;6) Makes a detailed analysis of the Self-consistency of Fundamental Physical Constants and Primary Physical Parameters through the prism of WUM. The performed analysis suggests: 1) Discontinuing using the notion “Vacuum” and its characteristics (Speed of Light in Vacuum, Characteristic Impedance of Vacuum, Vacuum Magnetic Permeability, Vacuum Electric Permittivity);2) Accepting the exact numerical values of Electrodynamic constant, Planck constant, Elementary charge, and Dimensionless Rydberg Constant α. WUM recommends the predicted value of Newtonian Constant of Gravitation in 2018 to be considered in CODATA Recommend Values of the Fundamental Physical Constants 2022. 展开更多
关键词 Classical Physics fundamental Physical Constants Electrodynamic Constant Speed of Light Dirac Large Number Dimensionless Rydberg Constant Newtonian Constant of Gravitation Self-Consistency of fundamental Physical Constants
下载PDF
Evaluation of the Long-term Performance of Microwave Radiation Imager Onboard Chinese Fengyun Satellites
10
作者 Wenying HE Hongbin CHEN +2 位作者 Xiang’ao XIA Shengli WU Peng ZHANG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2023年第7期1257-1268,共12页
Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providin... Accurate brightness temperature(BT)is a top priority for retrievals of atmospheric and surface parameters.Microwave Radiation Imagers(MWRIs)on Chinese Fengyun-3(FY-3)serial polar-orbiting satellites have been providing abundant BT data since 2008.Much work has been done to evaluate short-term MWRI observations,but the long-term performance of MWRIs remains unclear.In this study,operational MWRI BTs from 2012–19 were carefully examined by using simultaneous Advanced Microwave Scanning Radiometer 2(AMSR2)BTs as the reference.The BT difference between MWRI/FY3B and AMSR2 during 2012–19 increased gradually over time.As compared with MWRI/FY3B BTs over land,those of MWRI/FY3D were much closer to those of AMSR2.The ascending and descending orbit difference for MWRI/FY3D is also much smaller than that for MWRI/FY3B.These results suggested the improvement of MWRI/FY3D over MWRI/FY3B.A substantial BT difference between AMSR2 and MWRI was found over water,especially at the vertical polarization channels.A similar BT difference was found over polar water based on the simultaneous conical overpassing(SCO)method.Radiative transfer model simulations suggested that the substantial BT differences at the vertical polarization channels of MWRI and AMSR2 over water were partly contributed by their difference in the incident angle;however,the underestimation of the operational MWRI BT over water remained a very important issue.Preliminary assessment of the operational and recalibrated MWRI BT demonstrated that MWRI BTs were substantially improved after the recalibration,including the obvious underestimation of the operational MWRI BT at the vertical polarization channels over water was corrected,and the time-dependent biases were reduced. 展开更多
关键词 FY-3 satellites MWRI AMSR2 brightness temperature RECALIBRATION
下载PDF
A Positioning Method and Realization on Single Satellites in Different Orbits Using TDOA
11
作者 Laiding Zhao Xun Zhu +1 位作者 Gengxin Zhang Zhaowen Wang 《China Communications》 SCIE CSCD 2023年第7期108-121,共14页
The main geolocation technology currently used in COSPAS-SARSAT system is TDOA/FDOA or three-star TDOA,the principle is to determine the location of the signal source by using the difference in arrival time and freque... The main geolocation technology currently used in COSPAS-SARSAT system is TDOA/FDOA or three-star TDOA,the principle is to determine the location of the signal source by using the difference in arrival time and frequency of the wireless signal between different receivers.Therefore,ground monitoring stations need to be equipped with more than two antenna receiving stations,and multiple satellites should be able to simultaneously relay the distress signal from the target source in order to achieve the geolocation function.However,when the ground receiving system has only one antenna receiving station,or the target source is in a heavily obscured environment,the ground side is unable to receive the forwarded signals from multiple satellites at the same time,which will make it impossible to locate.To address these problems,in this paper,a time-sharing single satellite geolocations method based on different orbits is proposed for the first time.This method uses one or several low-earth orbit satellites(LEO)and mediumearth orbit satellites(MEO)in the visible area,and the receiving station only needs one pair of receiving antennas to complete the positioning.It can effectively compensate for the shortcomings of the traditional TDOA using the same moment and have better positioning accuracy compared with the single satellite in the same orbit.Due to the limited experimental conditions,this paper tests the navigation satellite using different orbit time-sharing single satellite geolocations,and proves that the positioning method has high positioning accuracy and has certain promotion and application value. 展开更多
关键词 different orbit time-sharing non-convex optimization single satellite TDOA
下载PDF
Supreme Theory of Everything: The Fundamental Forces in Quantum Hysteresis
12
作者 Tardad Ulaanbaatar 《Journal of Applied Mathematics and Physics》 2023年第10期3274-3285,共12页
Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based... Gravity is considered one of the most mysterious of the four fundamental forces, a well-studied but poorly understood phenomenon in science. Newtonian physics and General Relativity have studied it from outside. Based on fundamental forces the Grand Unified Theory (GUT) and the Standard Model (SM) of Particle Physics study from the inside. GUT and SM explain three fundamental forces that govern the universe: electromagnetism, the strong force, and the weak force. The fourth fundamental force hopes that must be gravity, which the SM cannot adequately explain. The research aims to explain fundamental forces and their interactions based on the hysteresis law. The hysteresis law studies the fundamental forces from both inside and outside, so, I hope it can explain the rules and principles of the universe from the microworld to the macroscopic world. The united force of the three fundamental forces in high energy singularity (vertical asymptote) of the hysteresis becomes the weakest like weak interaction and continuously like strong force but has an infinite range like electromagnetic interaction. In this sense, it may be called gravity. Unfortunately, gravity is not an individual force;it is the positive singularity or high energy asymptotic sum of three fundamental forces emerging from the depth of the hysteresis of the subatomic particles. 展开更多
关键词 The fundamental Forces Alternative Fermi-Dirac Distribution The Vertical Asymptote of Hysteresis GRAVITY
下载PDF
The Significance of Generalized Gauge Transformation across Fundamental Interactions
13
作者 Bi Qiao 《Journal of Modern Physics》 CAS 2023年第5期604-622,共19页
The author of this paper has put forward a unified program of gauge field from the mathematical and physical picture of the principal associated bundles: thinking that our universe may have more fundamental interactio... The author of this paper has put forward a unified program of gauge field from the mathematical and physical picture of the principal associated bundles: thinking that our universe may have more fundamental interactions than the four fundamental interactions, and these basic interaction gauge fields are only the projection components to the base manifold, that is our universe, from a unified gauge potential or connection of the principal associated bundle manifold on the base manifold. These components can satisfy the transformation of gauge potential, and can even be transformed from one basic interaction gauge potential to another basic interaction gauge potential, and can be summarized into a unified equation, that is, the generalized gauge Equation (GGE), but the gauge potential or connection on the principal bundle is invariant, corresponding to the invariance of gauge transformation [1]. In this paper, we will continue to discuss this aspect concretely, and specifically construct a spatiotemporal model with the frame bundle as the principal bundle, and the tensor bundle as the associated bundle, so that the four fundamental interactions, especially the electromagnetic interaction and the gravitational interaction, can be reflected in the bottom manifold, that is, the regional distributions in our universe. Furthermore, this paper studies the existence of gauge transformation across basic interactions by establishing a model of gauge transformation of basic interaction field;it is found that the unified expression formula is GGE and the expression relation on the curvature of space-time. Therefore, the author discusses the feasibility of the generalized gauge transformation across the basic electromagnetic interaction and the basic gravitational interaction, and on this basis, specifically determines a method or way to find the generalized gauge transformation, so as to try to realize the last step of the “unification” of the four fundamental interactions in physics, that is, the “unification” of electromagnetism and gravity. 展开更多
关键词 Generalized Gauge Transformation Unification of fundamental Interactions Principal Bundle Connection and Curvature
下载PDF
Spacecraft potential variations of the Swarm satellites at low Earth orbital altitudes
14
作者 HaiCheng Jiang Chao Xiong +4 位作者 Fan Yin YuHao Zheng ZiYuan Zhu Rui Yan Yi Wen Liu 《Earth and Planetary Physics》 CAS CSCD 2023年第4期421-435,共15页
In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated ... In this study, we provide the first detailed analysis of variations in the spacecraft potential (Vs) of the three Swarm satellites, which are flying at about 400-500 km. Unlike previous studies that have investigated extreme charging events, usually with spacecraft potentials as negative as −100 V, this study is focused on variations of Swarm Vs readings, which fall within a few negative volts. The Swarm observations show that spacecraft at low Earth orbital (LEO) altitudes are charged only slightly negatively, varying between −7 V and 0 V, with the majority of recorded potentials at these altitudes clustering close to −2 V. However, a second peak of Vs data is found at −5.5 V, though the event numbers for these more-negative observations are less, by an order of magnitude, than for incidents near the −2 V peak. These two distinct Vs peaks suggest two different causes. We have thus divided the Swarm spacecraft Vs data into two categories: less-negatively charged (−5 < Vs < 0 V) and more-negatively-charged (−6.5 < Vs < −5 V). These two Vs categories exhibit different spatial and temporal distributions. The Vs observations in the first category remain relatively closer to 0 V above the magnetic equator, but become much more negative at low and middle latitudes on the day side;at high latitudes, these first-category Vs readings are relatively more-negative during local summer. Second-category Vs events cluster into two bands at the middle latitudes (between ±20°-50° magnetic latitude), but with slightly more negative readings at the South Atlantic Anomaly (SAA) region;at high latitudes, these rarer but more-negative second-category Vs events exhibit relatively more-negative values during local winter, which is opposite to the seasonal pattern seen in the first category. By comparing Vs data to the distributions of background plasma density at Swarm altitudes, we find for the first category that more-negative Vs readings are recorded at regions with higher background plasma density, while for the second category the more-negative Vs data are observed at regions with lower background plasma density. This can be explained as follows: the electron and ion fluxes incident on Swarm surface, whose differences determine the potential of Swarm, are dominated by the background “cold” plasma (due to ionization) and “hot” plasma (due to precipitated particles from magnetosphere) for the two Vs categories, respectively. 展开更多
关键词 spacecraft potentia low Earth orbit satellites Swarm mission particle precipitation
下载PDF
Simulation for MSS-2 low-perigee elliptical orbit satellites:an example of lithospheric magnetic field modelling
15
作者 Yi Jiang Nils Olsen +1 位作者 JiaMing Ou Qing Yan 《Earth and Planetary Physics》 EI CSCD 2023年第1期151-160,共10页
A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observati... A future constellation of at least four geomagnetic satellites(designated Macao Scientific Satellite-1(MSS-1)and Macao Scientific Satellite-2(MSS-2))was recently proposed,to continue high-quality geomagnetic observations in the post-Swarm period,focusing especially on collecting data that will provide a global,three-dimensional survey of the geomagnetic field.In this paper,we present a simulation of two years of orbits(2020.01.01-2022.01.01)of two satellites(tentatively denoted as MSS-2)that are constellated in elliptical(200×5,300 km)low-perigee orbits.By comparing error variances of Gauss coefficients,we investigate the sensitivity of lithospheric magnetic field modelling to data collected from various satellite orbits,including a near circular reference orbit of 300×350km,and elliptical orbit of 180×5,300 km,220×5,300 km,200×3,000 km and 200×1,500 km.We find that in two years the two MSS-2 satellites can collect 35,000 observations at altitude below 250 km,data that will be useful in advancing the quality of lithospheric magnetic field modelling;this number of observations reflects the fact that only 4.5%of the flight time of these satellites will be below250 km(just 6.4%of their flight time below 300 km).By combining observations from the MSS-2 satellites’elliptical orbits of 200×5,300km with observations from a circular reference orbit,the variance of the geomagnetic model can be reduced by a factor of 285 at spherical harmonic degree n=200 and by a factor of 1,300 at n=250.The planned lower perigee of their orbits allows the new satellites to collect data at unprecedentedly lower altitudes,thus dramatically improving the spatial resolution of satellite-derived lithospheric field models,(up to 80%at n=150).In addition,lowering the apogee increases the time interval during which the satellites fly at near-Earth altitudes,thus improving the model predictions at all spherical harmonic degrees(around 52%-62%at n=150).The upper limit of the expected improvement to the field model at the orbital apogee is not as good as at the perigee.However,data from the MSS-1 orbit can help fill the gap between data from the MSS-2 orbits and from the circular reference orbit for the low-degree part of the model.The feasibility of even lower-altitude flight requires further discussion with satellite engineers. 展开更多
关键词 elliptical orbit satellite orbit simulation lithosphere field modelling spherical harmonics
下载PDF
Evaluation of the Global Horizontal Irradiation (GHI) on the Ground from the Images of the Second Generation European Meteorological Satellites MSG
16
作者 Ahmed El Ouiqary El M’kaddem Kheddioui Mohammed Faouzi Smiej 《Journal of Computer and Communications》 2023年第1期1-11,共11页
The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar f... The measurement of solar irradiation is still a necessary basis for planning the installation of photovoltaic parks and concentrating solar power systems. The meteorological stations for the measurement of the solar flux at any point of the earth’s surface are still insufficient worldwide;moreover, these measurements on the ground are expensive, and rare. To overcome this shortcoming, the exploitation of images from the European meteorological satellites of the second generation MSG is a reliable solution to estimate the global horizontal irradiance GHI on the ground with a good spatial and temporal coverage. Since 2004, the new generation MSG satellites provide images of Africa and Europe every 15 minutes with a spatial resolution of about 1 km × 1 km at the sub-satellite point. The objective of this work was to apply the Brazil-SR method to evaluate the global horizontal GHI irradiance for the entire Moroccan national territory from the European Meteosat Second Generation MSG satellite images. This bibliographic review also exposed the standard model of calculation of GHI in clear sky by exploiting the terrestrial meteorological measurements. 展开更多
关键词 Global Horizontal Irradiation GHI MSG Satellite Images Brazil-SR Method
下载PDF
A Large-Scale Scheduling Method for Multiple Agile Optical Satellites
17
作者 Zheng Liu Wei Xiong Minghui Xiong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1143-1163,共21页
This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,comple... This study investigates the scheduling problem ofmultiple agile optical satelliteswith large-scale tasks.This problem is difficult to solve owing to the time-dependent characteristic of agile optical satellites,complex constraints,and considerable solution space.To solve the problem,we propose a scheduling method based on an improved sine and cosine algorithm and a task merging approach.We first establish a scheduling model with task merging constraints and observation action constraints to describe the problem.Then,an improved sine and cosine algorithm is proposed to search for the optimal solution with the maximum profit ratio.An adaptive cosine factor and an adaptive greedy factor are adopted to improve the algorithm.Besides,a taskmerging method with a task reallocation mechanism is developed to improve the scheduling efficiency.Experimental results demonstrate the superiority of the proposed algorithm over the comparison algorithms. 展开更多
关键词 Multiple agile optical satellites scheduling task merging sine and cosine algorithm task reallocation
下载PDF
Teaching Reform of Fundamentals of Combustion for Energy and Power Engineering Majors in Agricultural Colleges and Universities in the Context of New Engineering Course
18
作者 Shengyang GAO Yanhua MA 《Asian Agricultural Research》 2023年第11期46-49,共4页
The Fundamentals of Combustion course is an important compulsory course for Energy and Power Engineering Majors under the background of carbon peaking.According to the characteristics of teaching and scientific resear... The Fundamentals of Combustion course is an important compulsory course for Energy and Power Engineering Majors under the background of carbon peaking.According to the characteristics of teaching and scientific research at present,combined with the characteristics of complexity,interdisciplinary and rapid technology update of this course,this paper discusses the teaching content and teaching design of this course to meet the needs of talents of production,teaching and research under the background of new engineering course.It proposes more applicable teaching methods and practical means to broaden students horizons,stimulate students autonomous learning momentum,master the professional knowledge application ability,and cultivate innovative and competitive engineering professionals to adapt to the new energy strategy. 展开更多
关键词 New engineering course fundamentals of Combustion Undergraduate education Practice teaching Curriculum reform
下载PDF
Large Scale Fundamental Interactions in the Universe
19
作者 Qiao Bi 《Journal of Modern Physics》 2023年第S1期1703-1720,共18页
The author of this paper once attempted to propose a unified framework for gauge fields based on the mathematical and physical picture of the principal fiber bundle: that is, to believe that our universe may have more... The author of this paper once attempted to propose a unified framework for gauge fields based on the mathematical and physical picture of the principal fiber bundle: that is, to believe that our universe may have more fundamental interactions than the four, and these fundamental gauge fields are only components on the bottom manifold (i.e. our universe) projected by a unified gauge potential of the principal fiber bundle manifold;these components can satisfy the transformation of gauge potential, or even be transformed from one basic interaction gauge potential to another basic interaction gauge potential, and can be summarized into a unified equation, namely the generalized gauge equation expression, corresponding to gauge transformation invariance;so the invariance of gauge transformation is a necessary condition for unified field theory, and the four (or more) fundamental interaction fields of the universe are unified in a unified gauge field defined by the connection on the principal fiber bundle. In this paper, the author continues to propose a model of large-scale (gravitational) fundamental interactions in the universe based on the mathematical and physical picture of the principal fiber bundle, attempting to explain that dark matter and dark energy are merely reflections of these gravitational fundamental interactions that deviate in intensity from the gravitational fundamental interactions of the solar system at galaxy scales or some cosmic scales which are much larger than the solar system. All these “gravitational” fundamental interactions originate from the unified gauge field of the universe, namely the connection or curvature on the principal fiber bundle. These interactions are their projected representations on the bottom manifold (i.e. our universe) by different cross-sections (gauge transformations). These projection representations of the universe certainly are described by the generalized gauge equation or curvature similarity equation, and under the guidance of curvature gauge transformation factors, oscillate and evolve between the curvatures 1→0→-1→0→1 of the universe. 展开更多
关键词 Principal Bundle Gauge Similarity Transformation Dark Matter and Dark Energy Large-Scale fundamental Interaction Evolution of Universe
下载PDF
Challenges,Opportunities,and Future Research in the Integration of 5G/6G Networks,LEO Satellites,and IoT for Environmental Protection and Sustainable Development at ECSTAR
20
作者 Settapong Malisuwan 《Journal of Environmental Science and Engineering(B)》 2023年第3期146-159,共14页
The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications... The rapid proliferation of connected IoT(Internet of Things)devices,along with the increasing demand for 5G mobile networks and ubiquitous high-speed connectivity,poses significant challenges in the telecommunications sector.To address these challenges,a comprehensive understanding of the integration of 5G/6G networks and LEO(Low Earth Orbit)satellite networks is required,forming the concept of“integrated networks”.Integration offers valuable advantages,including service continuity,wide-area coverage,and support for critical communications and emerging applications.This paper provides a high-level overview of the convergence of 5G/6G,LEO satellites,and IoT devices,shedding light on the technological challenges and standardization issues associated with the transition from 5G to 6G networks using NTNs(Non-Terrestrial Networks)based on LEO satellites.Furthermore,this research delves into the emerging social issues,potential possibilities,and the paradigm shift from the IoT to the IoI(Internet of Intelligence),which is poised to revolutionize the landscape of 6G wireless networks.By highlighting the interconnectedness of 5G/6G networks,LEO satellite systems,and IoT devices,it underscores the importance of leveraging these converging technologies to address environmental protection and achieve the United Nations SDGs(Sustainable Development Goals).In addition to providing valuable insights for readers seeking to comprehend the convergence of 5G/6G networks,LEO satellite systems,and IoT devices,this paper represents the outcomes of a comprehensive analysis conducted at the ECSTAR(Excellence Center of Space Technology and Research).Through an examination of technological challenges and advancements,it identifies future research directions and potential avenues for exploration at ECSTAR,thereby contributing to a broader understanding of integrated networks and their profound impact on future telecommunications systems.This research serves as a significant resource for advancing the knowledge and discourse surrounding the linkages between the convergence of these technologies,environmental protection,and the pursuit of the SDGs. 展开更多
关键词 6G beyond 5G IOT LEO satellite SDGs environmental protection
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部