期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Non-axisymmetrical vibration of elastic circular plate on layered transversely isotropic saturated ground 被引量:2
1
作者 王小岗 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2007年第10期1383-1396,共14页
The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropi... The non-axisymmetrical vibration of elastic circular plate resting on a layered transversely isotropic saturated ground was studied. First, the 3-d dynamic equations in cylindrical coordinate for transversely isotropic saturated soils were transformed into a group of governing differential equations with 1-order by the technique of Fourier expanding with respect to azimuth, and the state equation is established by Hankel integral transform method, furthermore the transfer matrixes within layered media are derived based on the solutions of the state equation. Secondly, by the transfer matrixes, the general solutions of dynamic response for layered transversely isotropic saturated ground excited by an arbitrary harmonic force were established under the boundary conditions, drainage conditions on the surface of ground as well as the contact conditions. Thirdly, the problem was led to a pair of dual integral equations describing the mixed boundaryvalue problem which can be reduced to the Fredholm integral equations of the second kind solved by numerical procedure easily. At the end of this paper, a numerical result concerning vertical and radical displacements both the surface of saturated ground and plate is evaluated. 展开更多
关键词 transversely isotropic layered saturated ground Blot's motion equations elastic circular plate Fredholm integral equation
下载PDF
Axisymmetric alternating direction explicit scheme for efficient coupled simulation of hydro-mechanical interaction in geotechnical engineering-Application to circular footing and deep tunnel in saturated ground
2
作者 Simon Heru Prassetyo Marte Gutierrez 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2018年第2期259-279,共21页
Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under sat... Explicit solution techniques have been widely used in geotechnical engineering for simulating the coupled hydro-mechanical(H-M) interaction of fluid flow and deformation induced by structures built above and under saturated ground, i.e. circular footing and deep tunnel. However, the technique is only conditionally stable and requires small time steps, portending its inefficiency for simulating large-scale H-M problems. To improve its efficiency, the unconditionally stable alternating direction explicit(ADE)scheme could be used to solve the flow problem. The standard ADE scheme, however, is only moderately accurate and is restricted to uniform grids and plane strain flow conditions. This paper aims to remove these drawbacks by developing a novel high-order ADE scheme capable of solving flow problems in nonuniform grids and under axisymmetric conditions. The new scheme is derived by performing a fourthorder finite difference(FD) approximation to the spatial derivatives of the axisymmetric fluid-diffusion equation in a non-uniform grid configuration. The implicit Crank-Nicolson technique is then applied to the resulting approximation, and the subsequent equation is split into two alternating direction sweeps,giving rise to a new axisymmetric ADE scheme. The pore pressure solutions from the new scheme are then sequentially coupled with an existing geomechanical simulator in the computer code fast Lagrangian analysis of continua(FLAC). This coupling procedure is called the sequentially-explicit coupling technique based on the fourth-order axisymmetric ADE scheme or SEA-4-AXI. Application of SEA-4-AXI for solving axisymmetric consolidation of a circular footing and of advancing tunnel in deep saturated ground shows that SEA-4-AXI reduces computer runtime up to 42%-50% that of FLAC’s basic scheme without numerical instability. In addition, it produces high numerical accuracy of the H-M solutions with average percentage difference of only 0.5%-1.8%. 展开更多
关键词 Hydro-mechanical(H-M) interaction Explicit coupling technique Alternating direction explicit(ADE) scheme High-order finite difference(FD) Non-uniform grid Axisymmetric consolidation Circular footing Deep tunnel in saturated ground
下载PDF
Effect of surface loading on the hydro-mechanical response of a tunnel in saturated ground
3
作者 Simon Heru Prassetyo Marte Gutierrez 《Underground Space》 SCIE EI 2016年第1期1-19,共19页
The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads,such as from construction of high-rise buildings above underground structures.In ... The design of underground spaces in urban areas must account not only for the current overburden load but also for future surface loads,such as from construction of high-rise buildings above underground structures.In saturated ground,the surface load will generate an additional mechanical response through stress changes and ground displacement,as well as a hydraulic response through pore pressure changes.These hydro-mechanical(H-M)changes can severely influence tunnel stability.This paper examines the effect of surface loading on the H-M response of a typical horseshoe-shaped tunnel in saturated ground.Two tunnel models were created in the computer code Fast Lagrangian Analysis of Continua(FLAC).One model represented weak and low permeability ground(stiff clay),and the other represented strong and high permeability ground(weathered granite).Each of the models was run under two liner permeabilities:permeable and impermeable.Two main cases were compared.In Case 1,the surface load was applied 10 years after tunnel construction.In Case 2,the surface load was applied after the steady state pore pressure condition was achieved.The simulation results show that tunnels with impermeable liners experienced the most severe influence from the surface loading,with high pore pressures,large inward displacement around the tunnels,and high bending moments in the liner.In addition,the severity of the response increased toward steady state.This induced H-M response was worse for tunnels in clay than for those in granite.Furthermore,the long-term liner stabilities in Case 1 and Case 2 were similar,indicating that the influence of the length of time between when the tunnel was completed and when the surface load was applied was negligible.These findings suggest that under surface loading,in addition to the ground strength,tunnel stability in saturated ground is largely influenced by liner permeability and the long-term H-M response of the ground. 展开更多
关键词 Surface loading Hydro-mechanical response Urban tunnels saturated ground
原文传递
Centrifuge tests for seismic response of single pile foundation supported wind turbines in sand influenced by earthquake history 被引量:2
4
作者 Wang Yubing Zhang Zhongchang +1 位作者 Wu Xiaofeng Zhu Bin 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2023年第3期623-636,共14页
This paper reports on two sets of centrifuge model tests of wind turbines in dry sand and saturated sand subjected to earthquake sequences.The wind turbine system is composed of a single pile foundation and a wind tur... This paper reports on two sets of centrifuge model tests of wind turbines in dry sand and saturated sand subjected to earthquake sequences.The wind turbine system is composed of a single pile foundation and a wind turbine.All tests were applied with liquefaction experiments and analysis projects(LEAP)waves to simplify the analysis.The objectives of the tests are to investigate:(1)the influence of earthquake history on the seismic response of wind turbines;(2)the influence of earthquake history on the dynamic pile-soil interaction;and(3)the influence of two different foundation types on the seismic response of wind turbines.The tests indicated that earthquake history has a significant influence on the natural frequency of the pile and the soil around the pile in the saturated sand,but has no obvious influence on the dry sand.The shear modulus of the soil and the acceleration amplification factor of the pile top in both tests increased and the maximum bending moment envelope of the single pile foundation shrunk.The stiffness of the p-y curve in saturated sand was increased by the earthquake history,while that in dry sand was not significantly affected. 展开更多
关键词 earthquake history effect wind turbine pile bending moment dry and saturated sand ground dynamic p-y curves
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部