The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quanti...The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quantified using a rainfall simulator and Guelph permeameter in a hilly area of subtropical China. A negative correlation existed between Kfs of the topsoil (0-5 cm) and K. The empirical expression K ≈ α × Kfs^-b+c, where a, b and c are the structural coefficients related to soil properties, such as soil type, soil parent material, organic matter, pH and mechanical composition, best described the relationship between soil saturated permeability and soil erodibility.展开更多
Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on see...Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on seepage characteristics was analyzed. The results show that: (1) Under the same axial stress (12 MPa), the permeability of different lithologic samples increases in the order: gangue 〈 mudstone 〈 sandstone 〈 limestone. The permeability of gangue is 3 magnitudes lower than that of limestone. The absolute value of the non-Darcy coefficient β increases in the order: limestone 〈 sandstone 〈 mudstone 〈 gangue. The non-Darcy coefficient β of limestone, which is positive, is 5 magnitudes lower than that of gangue. (2) With increasing axial stress, the permeability of saturated broken sandstone decreases, and the absolute value of the non-Darcy coefficient β increases. After the axial stress exceeds 12 MPa, the curves of permeability and non-Darcy coefficient β all tend to be stable. (3) With increasing Talbol power exponent, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. (4) With increasing loading, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. When the loading rate is 0.5 kN/s, the non-Darcy coefficient β is positive.展开更多
Low pressure,low oxygen concentration,and intense ultraviolet(UV)radiation in high-altitude environments,can cause oxidative stress which can trigger mountain sickness.A recent study demonstrated that hydrogen gas w...Low pressure,low oxygen concentration,and intense ultraviolet(UV)radiation in high-altitude environments,can cause oxidative stress which can trigger mountain sickness.A recent study demonstrated that hydrogen gas with a good permeability in biological membranes can treat various disorders by exerting its selective anti-oxidation and anti-inflammatory effects,indicating that hydrogen therapy plays a role in scavenging free radicals and in balancing oxidation and anti-oxidation systems of ceils. Therefore, we hypothesize that inhaling low-dose hydrogen or drinking hydrogen-saturated water is a novel and simple method to prevent and treat oxidative stress injury caused by low pressure, low oxygen concentration and intense UV radiation in plateaus, thus reducing the risk of mountain sickness.展开更多
Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic param...Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.展开更多
The dielectric breakdown(DB) model for a penny-shaped crack under a semipermeable boundary condition in a three-dimensional piezoelectric medium is studied.An approximate analytical solution is derived by using the ...The dielectric breakdown(DB) model for a penny-shaped crack under a semipermeable boundary condition in a three-dimensional piezoelectric medium is studied.An approximate analytical solution is derived by using the boundary integral equation with extended displacement discontinuity,and the corresponding boundary element method with double iterative approaches is developed to analyze the semi-permeable crack.The effect of electric boundary conditions on crack faces is discussed on the basis of DB model.By comparing the DB model with the polarization saturation(PS) model for different piezoelectric materials,some interesting phenomena related to the electric yielding zone and local J-integral are observed.展开更多
基金Project supported by the National Natural Sciences Foundation of China (No. 40471081)the National Key Basic Research Support Foundation (No. G1999011810)the Knowledge Innovation Program of the Chinese Academy of Sciences (No. KZCX3-SW-422)
文摘The relationships between soil erodibility factor (K) and soil saturated permeability (gfs) for cultivated Acrisols derived from Quaternary red clay and Cambisols derived from red sandstone were studied and quantified using a rainfall simulator and Guelph permeameter in a hilly area of subtropical China. A negative correlation existed between Kfs of the topsoil (0-5 cm) and K. The empirical expression K ≈ α × Kfs^-b+c, where a, b and c are the structural coefficients related to soil properties, such as soil type, soil parent material, organic matter, pH and mechanical composition, best described the relationship between soil saturated permeability and soil erodibility.
基金provided by the National Basic Research Program of China (No.2013CB227900)the Ordinary University Graduate Student Research Innovation Project in Jiangsu Province for 2014 (No.KYLX_1370)the National Natural Science Foundation of China (Nos.11502229 and 51404266)
文摘Using an MTS816.03 test system and self-designed seepage apparatus, seepage tests of saturated broken rocks were conducted, and the influence of lithology, axial stress, grain size distribution and loading rate on seepage characteristics was analyzed. The results show that: (1) Under the same axial stress (12 MPa), the permeability of different lithologic samples increases in the order: gangue 〈 mudstone 〈 sandstone 〈 limestone. The permeability of gangue is 3 magnitudes lower than that of limestone. The absolute value of the non-Darcy coefficient β increases in the order: limestone 〈 sandstone 〈 mudstone 〈 gangue. The non-Darcy coefficient β of limestone, which is positive, is 5 magnitudes lower than that of gangue. (2) With increasing axial stress, the permeability of saturated broken sandstone decreases, and the absolute value of the non-Darcy coefficient β increases. After the axial stress exceeds 12 MPa, the curves of permeability and non-Darcy coefficient β all tend to be stable. (3) With increasing Talbol power exponent, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. (4) With increasing loading, the permeability increases, and the absolute value of the non-Darcy coefficient β decreases. When the loading rate is 0.5 kN/s, the non-Darcy coefficient β is positive.
基金supported by the National Natural Science Foundation of China(Grant No.81301134,81371444)
文摘Low pressure,low oxygen concentration,and intense ultraviolet(UV)radiation in high-altitude environments,can cause oxidative stress which can trigger mountain sickness.A recent study demonstrated that hydrogen gas with a good permeability in biological membranes can treat various disorders by exerting its selective anti-oxidation and anti-inflammatory effects,indicating that hydrogen therapy plays a role in scavenging free radicals and in balancing oxidation and anti-oxidation systems of ceils. Therefore, we hypothesize that inhaling low-dose hydrogen or drinking hydrogen-saturated water is a novel and simple method to prevent and treat oxidative stress injury caused by low pressure, low oxygen concentration and intense UV radiation in plateaus, thus reducing the risk of mountain sickness.
基金supported by the National Basic Research Program of China(Grant No.2013CB228604)the National Grand Project for Science and Technology(Grant Nos.2011ZX05030-004-002,2011ZX05019-003,2011ZX05006-002)SINOPEC Key Laboratory of Geophysics+2 种基金Science Foundation for Post-doctoral Scientists of ChinaScience Foundation for Post-doctoral Scientists of Shandongthe Western Australian Energy Research Alliance(WA:ERA)
文摘Seismic fluid identification works as an effective approach to characterize the fluid feature and distribution of the reservoir underground with seismic data. Rock physics which builds bridge between the elastic parameters and reservoir parameters sets the foundation of seismic fluid identification, which is also a hot topic on the study of quantitative characterization of oil/gas reservoirs. Study on seismic fluid identification driven by rock physics has proved to be rewarding in recognizing the fluid feature and distributed regularity of the oil/gas reservoirs. This paper summarizes the key scientific problems immersed in seismic fluid identification, and emphatically reviews the main progress of seismic fluid identification driven by rock physics domestic and overseas, as well as discusses the opportunities, challenges and future research direction related to seismic fluid identification. Theoretical study and practical application indicate that we should incorporate rock physics, numerical simulation, seismic data processing and seismic inversion together to enhance the precision of seismic fluid identification.
基金Project supported by the National Natural Science Foundation of China(Nos.11102186 and 11272290)the Science and Technology Key Project of Henan(No.132102210412)
文摘The dielectric breakdown(DB) model for a penny-shaped crack under a semipermeable boundary condition in a three-dimensional piezoelectric medium is studied.An approximate analytical solution is derived by using the boundary integral equation with extended displacement discontinuity,and the corresponding boundary element method with double iterative approaches is developed to analyze the semi-permeable crack.The effect of electric boundary conditions on crack faces is discussed on the basis of DB model.By comparing the DB model with the polarization saturation(PS) model for different piezoelectric materials,some interesting phenomena related to the electric yielding zone and local J-integral are observed.