This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<s...This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.展开更多
The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to sim...The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.展开更多
The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation ...The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks.In the exploration and production of hydrocarbon reservoirs,the real stratum may be partially saturated with a multi-phase fluid mixture in general.Therefore,it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids.In this work,the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory.A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchysaturation theory.Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation,external patchy diameter,and viscosity.We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures,where the basic properties of the rock are obtained at the full gas saturation.The comparison of experimental data and theoretical modeling results shows a fairly good agreement,indicating that the new theory is effective.展开更多
Under the adiabatic, axisymmetric and steady assumption, a relationship between the saturated moist entropy structure and the secondary circulation in a tropical cyclone(TC) is derived from the continuity equation. It...Under the adiabatic, axisymmetric and steady assumption, a relationship between the saturated moist entropy structure and the secondary circulation in a tropical cyclone(TC) is derived from the continuity equation. It is found that the isentropic surfaces coincide with the streamlines, and the streamfunction can be expressed with saturated moist entropy. The secondary circulation and the saturated moist entropy structure depend on each other. Thus, a method for diagnosing the secondary circulation with the structure of saturated moist entropy is proposed. The method is verified with a simulated intense idealized TC with a highly axisymmetric structure. The diagnosed secondary circulation reproduces well the moist inflow in the boundary layer and the moist updraft in the eyewall. This method facilitates secondary circulation diagnosis in theoretical or mature TCs that satisfy the adiabatic, axisymmetric and steady approximations.展开更多
The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results conta...The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results contain rich information about pore structures and fluid occurrence states,this study investigated the pore structures of the tight sandstone reservoirs of the Shanxi Formation in the Daning-Jixian area,eastern Ordos Basin.Firstly,by making the inverse cumulative curve of the NMR T2 spectrum coincide with the capillary pressure curves which were obtained by the mercury injection capillary pressure(MICP)technique,this study derived a conversion coefficient that can be used to convert the NMR T2 spectrum into the pore throat radius distribution curves based on the NMR experimental results.Subsequently,we determined the pore radius intervals corresponding to irreducible water distribution using the NMR-derived pore radius distribution curves.Finally,the NMR T2 distribution curves based on the fractal theory were analyzed and the relationships between fractal dimensions and parameters,including permeability,porosity,reservoir quality index(RQI),flow zone indicator(FZI),irreducible water saturation,RT35,and RT50,were also discussed.The NMR-derived pore throat radius distribution curves of the study area are mainly unimodal,with some curves showing slightly bimodal distributions.The irreducible water mainly occurs in small pores with a pore radius less than 100 nm.As the permeability decreases,the contribution rate of small pores to the irreducible water gradually increases.The NMR-based fractal dimensions of pores show a two-segment distribution.Small pores have small fractal dimensions and are evenly distributed,while large pores have large fractal dimensions and complex pore structures.The fractal dimension of large pores(Dmax)is poorly correlated with porosity but strongly correlated with FZI,RQI,RT35,and RT50.These results indicate that large pores are the main pore zones that determine the seepage capacity of the reservoirs.Additionally,there is a certain correlation between Dmax and the irreducible water saturation.展开更多
Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less tha...Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil.展开更多
The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and s...The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.展开更多
The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and s...The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.展开更多
Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the s...Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.展开更多
In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-...In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.展开更多
The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can ...The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.展开更多
The structure and magnetic properties of the intermetallic compounds Y(Fe 1- x Co x ) 11.3 Nb 0.7 ( x =0, 0 05, 0 1, 0 2) were studied by X ray diffraction and magnetic property measurements. ...The structure and magnetic properties of the intermetallic compounds Y(Fe 1- x Co x ) 11.3 Nb 0.7 ( x =0, 0 05, 0 1, 0 2) were studied by X ray diffraction and magnetic property measurements. X ray diffraction patterns and thermomagnetic curves show that all compounds almost exhibit single phase. All Y(Fe 1- x Co x ) 11.3 Nb 0.7 compounds ( x =0, 0 05, 0 1, 0 2) crystallize in ThMn 12 type structure. Substitution of Co for Fe leads to a clear increasing of Curie temperature and a monotonic decreasing of lattice constants. At room temperature the composition dependence of saturation magnetization exhibits a maximum at about x =0 1~0 2. The magnetocrystalline anisotropy field at room temperature at first increases and then decreases with the increasing of Co content.展开更多
Metal Fe/Pd compositionally modulated films(CMFs) were prepared by vapour depo- sition from two sources onto glass substrate under vacuum.The modulation and crystal structures of the films were examined by X-ray diffr...Metal Fe/Pd compositionally modulated films(CMFs) were prepared by vapour depo- sition from two sources onto glass substrate under vacuum.The modulation and crystal structures of the films were examined by X-ray diffraction.The magnetic properties were determined by vibrating sample magnetometer.The Pd layers in the Fe/Pd CMFs are of fcc structure,and the Fe layer structure transits from bcc into amorphous,state with decreasing thickness of Fe layer.The dependence of specific saturation magnetization on thickness of Fe layers has also been discussed.展开更多
The blend fibers of acrylonitrile-vinylidene chloride-sodium methallysulfonate copolymer(AN-VDC-SMAS) and cellulose acetate (CA) with various blend ratios were investigated bymeans of SEM, DDV, WAXD, etc. The results ...The blend fibers of acrylonitrile-vinylidene chloride-sodium methallysulfonate copolymer(AN-VDC-SMAS) and cellulose acetate (CA) with various blend ratios were investigated bymeans of SEM, DDV, WAXD, etc. The results show that AN-VDC-SMAS and CA areincompatibale; the numerous microvoids in the blend fiber resulted from the phase seperationcan remarkably improve the water absorbability and the dyeing behavior but hardly influencethe mechanical properties. On the other hand, the crystal structure of the continuous phaseAN-VDC-SMAS is not influnced by the dispersed phase CA.展开更多
Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree ...Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree versus time are investigated. The results show that the specimens with similar curves of saturation degree versus time have nearly identical mechanical behavior. In particular, the uniform specimens should be chosen within the lower equilibrium saturation degree because steady test results are presented. Further, the conclusion is verified by the repeated test. Thus, the method for distinguishing the uniform unsaturated specimen is obtained. In the light of the method, an improved test process is proposed. The uniform specimens should be chosen by this method under the specific matric suction, and then shear tests are carried out on the chosen unsaturated specimen. Namely, initial value of unsaturated soil is not zero matric suction but a specific suction.展开更多
In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complic...In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complicated due to the complex pore structures, which cannot be accurately interpreted with commonly used model. In order to solve the problem, a three-water model has been applied in this study based on in-depth analysis of the conductive mechanism of rocks in the explored area, and favorable application results are achieved.展开更多
The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which inco...The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which incorporates a saturation constraint technique compared to classical linear quadratic regulator (LQR) with saturation. In the first step, the authors present a design methodology of SMC of a class of linear saturated systems. The authors present the structure of the saturation, after that the synthesis of the sliding surface is formulate as a problem of root clustering, which leads to the development of a continuous and non-linear control law that ensures the reaching condition of the sliding mode. The second step is devoted to present briefly the LQR controller technique. Finally, to validate results, the authors demonstrate an example of a quarter of vehicle system.展开更多
文摘This paper investigates the application of active mass dampers to mitigate the vibrations of building structures subjected to unknown external excitations under controller saturation conditions. By utilizing an H<sub>∞</sub> control strategy, the optimal state feedback controller is derived by solving the linear matrix inequality problem for controller saturation. Case studies show that the proposed controller is capable of stabilizing the closed-loop system with good control performance and effectively suppressing vibrations in building structures under unknown external excitation. When compared to controllers that do not consider saturation, the proposed controller requires lower gain and results in reduced energy consumption. The research findings provide valuable insights for addressing real-world building structure control problems, contributing to both theoretical significance and practical applications.
基金National Natural Science Foundation of People’s Republic of China under Grant Nos.51178011 and 51778386the Key Fundamental Study Development Project of People’s Republic of China under Grant No.2011CB013602。
文摘The seismic response characteristics of underground structures in saturated soils are investigated.A fully fluid-solid coupling dynamic model is developed and implemented into ABAQUS with a user-defined element to simulate the dynamic behavior of saturated soils.The accuracy of the model is validated using a classic example in literature.The performance of the model is verified by its application on simulating the seismic response characteristics of a subway station built in saturated soils.The merits of the model are demonstrated by comparing the difference of the seismic response of an underground structure in saturated soils between using the fully coupling model and a single-phase medium model.The study finds that the fully coupling model developed herein can simulate the dynamic response characteristics of the underground structures in saturated soils with high accuracy.The seismic response of the underground structure tends to be underestimated by using the single-phase medium model compared with using the fully coupling model,which provides a weaker confining action to the underground structure.
基金supported by the National Natural Science Foundation of China(Grant no.41704109)the Jiangsu Province Outstanding Youth Fund Project(Grant no.BK20200021).
文摘The wave-induced local fluid flow mechanism is relevant to the complex heterogeneity of pore structures in rocks.The analysis of the local fluid flow mechanism is useful for accurately describing the wave propagation characteristics in reservoir rocks.In the exploration and production of hydrocarbon reservoirs,the real stratum may be partially saturated with a multi-phase fluid mixture in general.Therefore,it is of great significance to investigate the wave velocity dispersion and attenuation features in relation to pore structures and fluids.In this work,the characteristics of fabric microstructures are obtained on the basis of pressure dependency of dry rock moduli using the effective medium theory.A novel anelasticity theoretical model for the wave propagation in a partially-saturated medium is presented by combining the extended Gurevich squirt-flow model and White patchysaturation theory.Numerical simulations are used to analyze wave propagation characteristics that depend on water saturation,external patchy diameter,and viscosity.We consider a tight sandstone from the Qingyang area of the Ordos Basin in west China and perform ultrasonic measurements under partial saturation states and different confining pressures,where the basic properties of the rock are obtained at the full gas saturation.The comparison of experimental data and theoretical modeling results shows a fairly good agreement,indicating that the new theory is effective.
基金funded in part by the National Basic Research and Development (973) Program of China (Grant No. 2015CB452805)in part by the National Natural Science Foundation of China (Grant No. 41775064)+1 种基金the Basic Research Fund of CAMS (2016Z003)supported by the Research Grants Council of the Hong Kong Special Administrative Region of China (Grant No. CityU11301417)
文摘Under the adiabatic, axisymmetric and steady assumption, a relationship between the saturated moist entropy structure and the secondary circulation in a tropical cyclone(TC) is derived from the continuity equation. It is found that the isentropic surfaces coincide with the streamlines, and the streamfunction can be expressed with saturated moist entropy. The secondary circulation and the saturated moist entropy structure depend on each other. Thus, a method for diagnosing the secondary circulation with the structure of saturated moist entropy is proposed. The method is verified with a simulated intense idealized TC with a highly axisymmetric structure. The diagnosed secondary circulation reproduces well the moist inflow in the boundary layer and the moist updraft in the eyewall. This method facilitates secondary circulation diagnosis in theoretical or mature TCs that satisfy the adiabatic, axisymmetric and steady approximations.
基金supported by the National Natural Science Foundation of China(41702132).
文摘The study of pore structure requires consideration of important factors including pore throat size,pore radius composition,and pore-throat configuration.As the nuclear magnetic resonance(NMR)experimental results contain rich information about pore structures and fluid occurrence states,this study investigated the pore structures of the tight sandstone reservoirs of the Shanxi Formation in the Daning-Jixian area,eastern Ordos Basin.Firstly,by making the inverse cumulative curve of the NMR T2 spectrum coincide with the capillary pressure curves which were obtained by the mercury injection capillary pressure(MICP)technique,this study derived a conversion coefficient that can be used to convert the NMR T2 spectrum into the pore throat radius distribution curves based on the NMR experimental results.Subsequently,we determined the pore radius intervals corresponding to irreducible water distribution using the NMR-derived pore radius distribution curves.Finally,the NMR T2 distribution curves based on the fractal theory were analyzed and the relationships between fractal dimensions and parameters,including permeability,porosity,reservoir quality index(RQI),flow zone indicator(FZI),irreducible water saturation,RT35,and RT50,were also discussed.The NMR-derived pore throat radius distribution curves of the study area are mainly unimodal,with some curves showing slightly bimodal distributions.The irreducible water mainly occurs in small pores with a pore radius less than 100 nm.As the permeability decreases,the contribution rate of small pores to the irreducible water gradually increases.The NMR-based fractal dimensions of pores show a two-segment distribution.Small pores have small fractal dimensions and are evenly distributed,while large pores have large fractal dimensions and complex pore structures.The fractal dimension of large pores(Dmax)is poorly correlated with porosity but strongly correlated with FZI,RQI,RT35,and RT50.These results indicate that large pores are the main pore zones that determine the seepage capacity of the reservoirs.Additionally,there is a certain correlation between Dmax and the irreducible water saturation.
文摘Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil.
文摘The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.
文摘The effect of Mn substitution for partial Fe in RFe 11Ti on structure and magnetic properties of compounds was researched. RFe 7Mn 4Ti samples (R=Y,Tb,Dy,Ho,Er) were prepared by means of vacuum arc-melting and subsequent vacuum annealing. The structure and magnetic properties of RFe 7Mn 4Ti compounds were investigated by X-ray powder diffraction and magnetic measurements. The following conclusions were obtained: all the RFe tMn 4Ti compounds crystallize in the ThMn 12-type structure. The lattice constants and the unit-cell volume changed with the increase of atomic number for R=Y, Tb, Dy, Ho, and Er. The compensation characters appear for the DyFe 7Mn 4Ti and HoFe 7Mn 4Ti compounds, and the compensation temperatures were about 123 K and 90 K, respectively. The Curie temperature, the saturation magnetization, and saturation moment of RFe 7Mn 4Ti compounds were given.
基金National Natural Science Foundation of China under Grant Nos.41272296 and 51208294
文摘Based on a centrifuge model test and distinct element method(DEM), this study provides new insights into the uplift response of a shallow-buried structure and the liquefaction mechanism for saturated sand around the structure under seismic action. In the centrifuge test, a high-speed microscopic camera was installed in the structure model, by which the movements of particles around the structure were monitored. Then, a two-dimensional digital image processing technology was used to analyze the microstructure of saturated sand during the shaking event. Herein, a numerical simulation of the centrifuge experiment was conducted using a two-phase(solid and fl uid) fully coupled distinct element code. This code incorporates a particle-fl uid coupling model by means of a "fi xed coarse-grid" fl uid scheme in PFC3D(Particle Flow Code in Three Dimensions), with the modeling parameters partially calibrated based on earlier studies. The physical and numerical models both indicate the uplifts of the shallow-buried structure and the sharp rise in excess pore pressure. The corresponding micro-scale responses and explanations are provided. Overall, the uplift response of an underground structure and the occurrence of liquefaction in saturated sand are predicted successfully by DEM modeling. However, the dynamic responses during the shaking cannot be modeled accurately due to the restricted computer power.
基金the National Natural Science Foundation of China(Grant No.41390451,41172101)the National Key Research Project of China(No.2016YFC0601003).
文摘In this study, the types of micropores in a reservoir are analyzed using casting thin section(CTS) observation and scanning electron microscopy(SEM) experiments. The high-pressure mercury injection(HPMI) and constant-rate mercury injection(CRMI) experiments are performed to study the micropore structure of the reservoir. Nuclear magnetic resonance(NMR), gas-water relative seepage, and gas-water two-phase displacement studies are performed to examine the seepage ability and parameters of the reservoir, and further analyses are done to confirm the controlling effects of reservoir micropore structures on seepage ability. The experimental results show that Benxi, Taiyuan, Shanxi, and Shihezi formations in the study area are typical ultra-low porosity and ultra-low permeability reservoirs. Owing to compaction and later diagenetic transformation, they contain few primary pores. Secondary pores are the main pore types of reservoirs in the study area. Six main types of secondary pores are: intergranular dissolved pores, intragranular dissolved pores, lithic dissolved pores, intercrystalline dissolved pores, micropores, and microfracture. The results show that reservoirs with small pore-throat radius, medium displacement pressure, and large differences in pore-throat structures are present in the study area. The four types of micropore structures observed are: lower displacement pressure and fine pores with medium-fine throats, low displacement pressure and fine micropores with fine throats, medium displacement pressure and micropores with micro-fine throats, and high displacement pressure and micropores with micro throats. The micropore structure is complex, and the reservoir seepage ability is poor in the study areas. The movable fluid saturation, range of the gas-water two-phase seepage zone, and displacement types are the three parameters that well represent the reservoir seepage ability. According to the characteristic parameters of microscopic pore structure and seepage characteristics, the reservoirs in the study area are classified into four types(Ⅰ–Ⅳ), and types Ⅰ, Ⅱ, and Ⅲ are the main types observed. From type Ⅰ to type Ⅳ, the displacement pressure increases, and the movable fluid saturation and gas-water two-phase seepage zone decrease, and the displacement type changes from the reticulation-uniform displacement to dendritic and snake like.
基金Project 50579017 supported by the National Natural Science Foundation of China
文摘The development of fissures in expansive soils has a great effect on the stability of slope. Of the three phases of soils,the gas phase and solid phase are relatively insulated,so the average resistivity of soils can be calculated from the resistivity of the liquid phase. On this basis,the two-part model of resistivity changing with the water saturation of the expansive soil can be deduced. A 2-D resistance grid model is established based on simulating the resistance of ver-tically developed fissures. Variation in measured resistance of vertically developed fissures at different positions can be calculated from this model. Fissure development can be inversely determined from the variation in the measured resis-tance. Finally,the model is verified by an indoor resistivity test for remolded soil samples,indicating that the test result agrees well with that of the model established.
文摘The structure and magnetic properties of the intermetallic compounds Y(Fe 1- x Co x ) 11.3 Nb 0.7 ( x =0, 0 05, 0 1, 0 2) were studied by X ray diffraction and magnetic property measurements. X ray diffraction patterns and thermomagnetic curves show that all compounds almost exhibit single phase. All Y(Fe 1- x Co x ) 11.3 Nb 0.7 compounds ( x =0, 0 05, 0 1, 0 2) crystallize in ThMn 12 type structure. Substitution of Co for Fe leads to a clear increasing of Curie temperature and a monotonic decreasing of lattice constants. At room temperature the composition dependence of saturation magnetization exhibits a maximum at about x =0 1~0 2. The magnetocrystalline anisotropy field at room temperature at first increases and then decreases with the increasing of Co content.
文摘Metal Fe/Pd compositionally modulated films(CMFs) were prepared by vapour depo- sition from two sources onto glass substrate under vacuum.The modulation and crystal structures of the films were examined by X-ray diffraction.The magnetic properties were determined by vibrating sample magnetometer.The Pd layers in the Fe/Pd CMFs are of fcc structure,and the Fe layer structure transits from bcc into amorphous,state with decreasing thickness of Fe layer.The dependence of specific saturation magnetization on thickness of Fe layers has also been discussed.
文摘The blend fibers of acrylonitrile-vinylidene chloride-sodium methallysulfonate copolymer(AN-VDC-SMAS) and cellulose acetate (CA) with various blend ratios were investigated bymeans of SEM, DDV, WAXD, etc. The results show that AN-VDC-SMAS and CA areincompatibale; the numerous microvoids in the blend fiber resulted from the phase seperationcan remarkably improve the water absorbability and the dyeing behavior but hardly influencethe mechanical properties. On the other hand, the crystal structure of the continuous phaseAN-VDC-SMAS is not influnced by the dispersed phase CA.
基金Project(51179023) supported by the National Natural Science Foundation of China
文摘Pressure plate instrument is employed during drying, and unconfined compressive strength test is performed on the unsaturated specimen. Curves of shear force versus shear displacement, and curves of saturation degree versus time are investigated. The results show that the specimens with similar curves of saturation degree versus time have nearly identical mechanical behavior. In particular, the uniform specimens should be chosen within the lower equilibrium saturation degree because steady test results are presented. Further, the conclusion is verified by the repeated test. Thus, the method for distinguishing the uniform unsaturated specimen is obtained. In the light of the method, an improved test process is proposed. The uniform specimens should be chosen by this method under the specific matric suction, and then shear tests are carried out on the chosen unsaturated specimen. Namely, initial value of unsaturated soil is not zero matric suction but a specific suction.
文摘In Mesozoic-Cenozoic faulted basin in the periphery of Daqing exploration area, the clastic reservoirs mainly consist of siltstone and gravel-bearing sandstone. The electrical conductivity of the reservoirs is complicated due to the complex pore structures, which cannot be accurately interpreted with commonly used model. In order to solve the problem, a three-water model has been applied in this study based on in-depth analysis of the conductive mechanism of rocks in the explored area, and favorable application results are achieved.
文摘The saturation problem is the one of the most common handicaps for applying to real applications, especially the actuator saturation. This paper focuses on the robustness of the sliding mode control (SMC) which incorporates a saturation constraint technique compared to classical linear quadratic regulator (LQR) with saturation. In the first step, the authors present a design methodology of SMC of a class of linear saturated systems. The authors present the structure of the saturation, after that the synthesis of the sliding surface is formulate as a problem of root clustering, which leads to the development of a continuous and non-linear control law that ensures the reaching condition of the sliding mode. The second step is devoted to present briefly the LQR controller technique. Finally, to validate results, the authors demonstrate an example of a quarter of vehicle system.