The classification of π-/σ-aromaticity depends on the electrons with the dominating contributions.Traditionally,π-andσ-aromaticity are used to describe the unsaturated and saturated systems,respectively.Thus,it is...The classification of π-/σ-aromaticity depends on the electrons with the dominating contributions.Traditionally,π-andσ-aromaticity are used to describe the unsaturated and saturated systems,respectively.Thus,it is rarely reported that π-aromaticity is dominated in a saturated system.Here we demonstrate that π-aromaticity could be dominating in several fully saturated four-membered rings(4MRs),supported by various aromaticity indices including ΔBL,NICS,EDDB,MCI,and Ad NDP.The origin of suchπ-aromaticity in saturated rings could be attributed to an introduction of two additional electrons into the π-type LUMO of the parent neutral species.Our findings represent a novel approach to achieve π-aromaticity into a fully saturated system which has traditionally been dominated by σ-aromaticity.展开更多
This study addresses the problem of global asymptotic stability for uncertain complex cascade systems composed of multiple integrator systems and non-strict feedforward nonlinear systems. To tackle the complexity inhe...This study addresses the problem of global asymptotic stability for uncertain complex cascade systems composed of multiple integrator systems and non-strict feedforward nonlinear systems. To tackle the complexity inherent in such structures, a novel nested saturated control design is proposed that incorporates both constant saturation levels and state-dependent saturation levels. Specifically, a modified differentiable saturation function is proposed to facilitate the saturation reduction analysis of the uncertain complex cascade systems under the presence of mixed saturation levels. In addition, the design of modified differentiable saturation function will help to construct a hierarchical global convergence strategy to improve the robustness of control design scheme. Through calculation of relevant inequalities, time derivative of boundary surface and simple Lyapunov function,saturation reduction analysis and convergence analysis are carried out, and then a set of explicit parameter conditions are provided to ensure global asymptotic stability in the closed-loop systems. Finally, a simplified system of the mechanical model is presented to validate the effectiveness of the proposed method.展开更多
This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse&q...This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse"means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included.The main contributions are summarized as:1)to our best knowledge,it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult;2)by designing the saturated-type hysteresis pseudo inverse compensator,the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis;3)by combining DSC technique with the tracking error transformed function,the"explosion of complexity"problem in backstepping method is overcome and the prespecified tracking performance is achieved.Analysis of stability and experimental results on the hardware-inloop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.展开更多
In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a gene...In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.展开更多
A designing method is presented to find stabilizing saturated linear controllers for linear continuous time and discrete time singular systems with control constraints. The idea is as follows: The system is first stab...A designing method is presented to find stabilizing saturated linear controllers for linear continuous time and discrete time singular systems with control constraints. The idea is as follows: The system is first stabilized by a low-gain linear state feedback control. A general Lyapunov function is found, on the basis of which another linear state feedback control is computed. The second step is very similar to a relay control design. The two controls are added and saturated.展开更多
Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work in...Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.展开更多
In this paper, we discuss the problem of guaranteed cost control for uncertain linear systems subject to actuator saturation. Based on the quadratic and non-quadratic Lyapunov functions, sufficient conditions for the ...In this paper, we discuss the problem of guaranteed cost control for uncertain linear systems subject to actuator saturation. Based on the quadratic and non-quadratic Lyapunov functions, sufficient conditions for the robust stability and performance are derived. Moreover, all the conditions can be expressed as linear matrix inequalities (LMIs) or bilinear matrix inequalities (BMIs) in terms of the feedback gain. Thus, the static controller can be effectively synthesized via convex optimization. A numerical example illustrates the effectiveness of the method.展开更多
Controllable saturation reactors are widely used in reactive power compensation. The control system of controllable saturation reactor determines adaption speed, accuracy, and stability. First, an innovative type of c...Controllable saturation reactors are widely used in reactive power compensation. The control system of controllable saturation reactor determines adaption speed, accuracy, and stability. First, an innovative type of controllable saturation reactor is introduced. After that the control system is designed, and a self-tuning algorithm in PID controller is proposed in the paper. The algorithm tunes PID parameters automatically with different error signals caused by varied loads in power system. Then the feasibility of the above algorithm is verified by Simulink module of Matlab software. The results of simulation indicate that the control system can efficiently reduce adaption time and overshoot.展开更多
Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficie...Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.展开更多
This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is s...This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.展开更多
This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimati...This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.展开更多
Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf lu...Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.展开更多
High-saturated fat(HF)or high-fructose(HFr)consumption in children predispose them to metabolic syndrome(MetS).In rodent models of MetS,diets containing individually HF or HFr lead to a variable degree of MetS.Neverth...High-saturated fat(HF)or high-fructose(HFr)consumption in children predispose them to metabolic syndrome(MetS).In rodent models of MetS,diets containing individually HF or HFr lead to a variable degree of MetS.Nevertheless,simultaneous intake of HF plus HFr have synergistic effects,worsening MetS outcomes.In children,the effects of HF or HFr intake usually have been addressed individually.Therefore,we have reviewed the outcomes of HF or HFr diets in children,and we compare them with the effects reported in rodents.In humans,HFr intake causes increased lipogenesis,hypertriglyceridemia,obesity and insulin resistance.On the other hand,HF diets promote low grade-inflammation,obesity,insulin resistance.Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents,there is little information about the combined effects of HF plus HFr intake in children.The aim of this review is to warn about this issue,as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population.We consider that this is an alarming issue that needs to be assessed,as the simultaneous intake of HF plus HFr is common on fast food menus.展开更多
The strength of rock materials is largely affected by water and loading conditions, but there are few studies on mechanical properties of saturated rocks at high strain rates. Through compressive tests on dry and satu...The strength of rock materials is largely affected by water and loading conditions, but there are few studies on mechanical properties of saturated rocks at high strain rates. Through compressive tests on dry and saturated sandstone specimens, it was found that the dynamic compressive strength of both dry and saturated sandstone specimens increased with the increase of strain rates. The saturated rock specimens showed stronger rate dependence than the dry ones. The water affecting factor (WAF), as the ratio of the strength under dry state to that under saturated state, was introduced to describe the influence of water on the compressive strength at different strain rates. The WAF under static load was close to 1.38, and decreased with the increase of strain rate. When the strain rate reached 190 s^-1, the WAF reduced to 0.98. It indicates that the compressive strength of saturated specimens can be higher than that of dry ones when the strain rate is high enough. Furthermore, the dual effects of water and strain rate on the strength of rock were discussed based on sliding crack model, which provided a good explanation for the experimental results.展开更多
By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock unde...By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock under different loading stresses were obtained. By comparing with the creep rule of dry rock in the same location, the creep rule of deep saturated rock was analyzed. Based on the united rheological mechanical model, the rheological model of deep saturated rock was recognized, and the parameters of the model were determined. The results show that the creep curves are very smooth under low stress, but the phenomena of wave and catastrophe turn up under high stress, and the bearing capacity of rock is weakening over time. The rheological properties of saturated and dry rocks are very different under tlie condition of deep high stress, especially when unloading, degradation and damage of rock quality is more serious, and the effect of water cannot be neglected. The H--HIN--NJS model (Schofield-Scott-Blair model) was selected to represent the rheology rule of deep saturated rock, and the fitting curves of model agree well with the experiment data, so the selected model is reasonable.展开更多
Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing ...Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing equations of wave propagation by analyzing the effective medium theory and then providing a viscoelastic Biot/squirt (BISQ) model which can analyze the wave propagation problems in a partially viscous pore fluid saturated porous media. In this model, the effects of pore fluid distribution patterns on the effective bulk modulus at different frequencies are considered. Then we derive the wave dynamic equations in the time-space domain. The phase velocity and the attenuation coefficient equations of the viscoelatic BISQ model in the frequency-wavenumber domain are deduced through a set of plane harmonic solution assumptions. Finally, by means of numerical simulations, we investigate the effects of water saturation, permeability, and frequency on compressional wave velocity and attenuation. Based on tight sandstone and carbonate experimental observed data, the compressional wave velocities of partially saturated reservoir rocks are calculated. The compressional wave velocity in carbonate reservoirs is more sensitive to gas saturation than in sandstone reservoirs.展开更多
Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for un...Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for understanding the productivity of stand, nutrient cycle and turnover of nitrogen of forest ecosystems. Based on comparison and analysis of domestic and in-ternational academic references related to studies on nitrogen mineralization, nitrogen saturation and nitrogen cycle in recent 10 years, the current situation and development of the study on these aspects, and the problems existed in current researches were reviewed. At last, some advices were given for future researches.展开更多
Two geothermal fields with calcite scaling in some wells in Iceland were selected for the study of calcite scaling potential. An allowable supersaturation was found by comparing the degree ...Two geothermal fields with calcite scaling in some wells in Iceland were selected for the study of calcite scaling potential. An allowable supersaturation was found by comparing the degree of calcite supersaturation and actual scaling status in the selected wells.The saturation index,0.37~ 0.48, was the boundary between calcite scaling and no scaling. The information about changes in chloride concentration shows that mixing different waters is the main cause to form calcite scaling in the geothermal wells selected in this study.In this case, the content of chloride can be used as an index of scaling.展开更多
AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high conc...AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C(PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression.CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members.展开更多
Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate (lime-mud) intercalated with...Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate (lime-mud) intercalated with cohesive soil, calcites with particle sizes diameters of ≤ 5 μm, 10–15 μm and 23–30 μm as well as cohesive soil were sunk alternatively in water of three boxes to build three test models, each of which has a specific size of calcite. Pore water pressure gauges were buried in lime-mud layers at different depths in each model, and connected with a computer system to collect pore water pressures. By means of soil tests, physical property parameters and plasticity indices (Ip) were obtained for various grain-sized saturated lime-muds. The lime-muds with Ip ranging from 6.3 to 8.5 (lower than 10) are similar to liquid saturated silt in the physical nature, indicating that saturated silt can be liquefied once induced by a strong earthquake. One model cart was pushed quickly along the length direction of the model so that its rigid wheels collided violently with the stone stair, thus generating an artificial earthquake with seismic wave magnitude greater than VI degree. When unidirectional cyclic seismic load of horizontal compression-tension-shear was imposed on the soil layers in the model, enough great pore water pressure has been accumulated within pores of lime-mud, resulting in liquefaction of lime-mud layers. Meanwhile, micro-fractures formed in each soil layer provided channels for liquefaction dewatering, resulting in formation of macroscopic liquefaction deformation, such as liquefied lime-mud volcanoes, liquefied diapir structures, vein-like liquefied structures and liquefied curls, etc. Splendid liquefied lime-mud eruption lasted for two to three hours, which is similar to the sand volcano eruption induced by strong earthquake. However, under the same artificial seismic conditions, development of macroscopic liquefied structures in three experimental models varied in shape, depth and quantity, indicating that excess pore water pressure ratios at initial liquefaction stage and complete liquefaction varied with depth. With size increasing of calcite particle in lime-mud, liquefied depth and deformation extent increase accordingly. The simulation test verifies for the first time that strong earthquakes may cause violent liquefaction of saturated lime-mud composed of micron-size calcite particles, uncovering the puzzled issue whether seafloor lime-mud can be liquefied under strong earthquake. This study not only provides the latest simulation data for explaining the earthquake-induced liquefied deformations of saturated lime-mud and seismic sedimentary events, but also is of great significance for analysis of foundation stability in marine engineering built on the soft calcium carbonate layers in neritic environment.展开更多
基金financial support from the Chinese National Natural Science Foundation(No.22231009)the University Development Fund at the Chinese University of Hong Kong,Shenzhen(No.UDF01003116)。
文摘The classification of π-/σ-aromaticity depends on the electrons with the dominating contributions.Traditionally,π-andσ-aromaticity are used to describe the unsaturated and saturated systems,respectively.Thus,it is rarely reported that π-aromaticity is dominated in a saturated system.Here we demonstrate that π-aromaticity could be dominating in several fully saturated four-membered rings(4MRs),supported by various aromaticity indices including ΔBL,NICS,EDDB,MCI,and Ad NDP.The origin of suchπ-aromaticity in saturated rings could be attributed to an introduction of two additional electrons into the π-type LUMO of the parent neutral species.Our findings represent a novel approach to achieve π-aromaticity into a fully saturated system which has traditionally been dominated by σ-aromaticity.
基金supported in part by the National Natural Science Foundation of China (62203178, U1913602, 61936004)the National Key Rsearch and Development Program of China (2021ZD0201300)+3 种基金the China Postdoctoral Science Foundation (2021TQ0116)the Innovation Group Project of the National Natural Science Foundation of China (61821003)the Technology Innovation Project of Hubei Province of China (2019AE A171)the 111 Project on Computational Intelligence and Intelligent Control (B18024)。
文摘This study addresses the problem of global asymptotic stability for uncertain complex cascade systems composed of multiple integrator systems and non-strict feedforward nonlinear systems. To tackle the complexity inherent in such structures, a novel nested saturated control design is proposed that incorporates both constant saturation levels and state-dependent saturation levels. Specifically, a modified differentiable saturation function is proposed to facilitate the saturation reduction analysis of the uncertain complex cascade systems under the presence of mixed saturation levels. In addition, the design of modified differentiable saturation function will help to construct a hierarchical global convergence strategy to improve the robustness of control design scheme. Through calculation of relevant inequalities, time derivative of boundary surface and simple Lyapunov function,saturation reduction analysis and convergence analysis are carried out, and then a set of explicit parameter conditions are provided to ensure global asymptotic stability in the closed-loop systems. Finally, a simplified system of the mechanical model is presented to validate the effectiveness of the proposed method.
基金supported in part by the National Natural Science Foundation of China(61673101,61973131,61733006,U1813201)the Japan Society for the Promotion of Science(C18K04212)+2 种基金the Science and Technology Project of Jilin Province(20180201009SF,20170414011GH,20180201004SF,20180101069JC)the Fundamental Research Funds for the Central Universities(N2008002)“Xing Liao Ying Cai”Program(XLYC1907073)。
文摘This paper aims at eliminating the asymmetric and saturated hysteresis nonlinearities by designing hysteresis pseudo inverse compensator and robust adaptive dynamic surface control(DSC)scheme.The"pseudo inverse"means that an on-line calculation mechanism of approximate control signal is developed by applying a searching method to the designed temporary control signal where the true control signal is included.The main contributions are summarized as:1)to our best knowledge,it is the first time to compensate the asymmetric and saturated hysteresis by using hysteresis pseudo inverse compensator because the construction of the true saturated-type hysteresis inverse model is very difficult;2)by designing the saturated-type hysteresis pseudo inverse compensator,the construction of true explicit hysteresis inverse and the identifications of its corresponding unknown parameters are not required when dealing with the saturated-type hysteresis;3)by combining DSC technique with the tracking error transformed function,the"explosion of complexity"problem in backstepping method is overcome and the prespecified tracking performance is achieved.Analysis of stability and experimental results on the hardware-inloop platform illustrate the effectiveness of the proposed adaptive pseudo inverse control scheme.
基金supported by the Swiss National Science Foundation(Grant No.189882)the National Natural Science Foundation of China(Grant No.41961134032)support provided by the New Investigator Award grant from the UK Engineering and Physical Sciences Research Council(Grant No.EP/V012169/1).
文摘In this study,we present a novel nodal integration-based particle finite element method(N-PFEM)designed for the dynamic analysis of saturated soils.Our approach incorporates the nodal integration technique into a generalised Hellinger-Reissner(HR)variational principle,creating an implicit PFEM formulation.To mitigate the volumetric locking issue in low-order elements,we employ a node-based strain smoothing technique.By discretising field variables at the centre of smoothing cells,we achieve nodal integration over cells,eliminating the need for sophisticated mapping operations after re-meshing in the PFEM.We express the discretised governing equations as a min-max optimisation problem,which is further reformulated as a standard second-order cone programming(SOCP)problem.Stresses,pore water pressure,and displacements are simultaneously determined using the advanced primal-dual interior point method.Consequently,our numerical model offers improved accuracy for stresses and pore water pressure compared to the displacement-based PFEM formulation.Numerical experiments demonstrate that the N-PFEM efficiently captures both transient and long-term hydro-mechanical behaviour of saturated soils with high accuracy,obviating the need for stabilisation or regularisation techniques commonly employed in other nodal integration-based PFEM approaches.This work holds significant implications for the development of robust and accurate numerical tools for studying saturated soil dynamics.
文摘A designing method is presented to find stabilizing saturated linear controllers for linear continuous time and discrete time singular systems with control constraints. The idea is as follows: The system is first stabilized by a low-gain linear state feedback control. A general Lyapunov function is found, on the basis of which another linear state feedback control is computed. The second step is very similar to a relay control design. The two controls are added and saturated.
基金supported by the National Natural Science Foundation of China(No.51808128)the Natural Science Foundation of Fujian Province(No.2022J01091)。
文摘Frost heave in seasonally frozen regions is a one-dimensional process that could severely damage infrastructure subgrades.Stress state,temperature and water migration are important factors for frost heave.This work investigated the effects of soil temperature and volumetric water content on the transient frost heave ratio during the freezing of saturated silty clay in an open system and analyzed the relationships between the transient frost heave ratio and freezing rate and between temperature gradient and frost heave rate.The results show that the frost heave ratio,frost heave rate,and freezing rate are positively correlated with the temperature gradient since the temperature gradient drives the water migration during freezing,indicating the transient temperature gradient could be used to evaluate the frost heave of saturated silty clay.The transient freezing rate and transient frost heave ratio are logarithmically related to the transient frost heave ratio and transient temperature gradient,respectively.The effects of transient temperature gradient on frost heave are the principal mechanism responsible for different frost heave characteristics and uneven frost heave along a subgrade of the same soil type.
基金supported by the National Natural Science Foundation of China (No.60704004)
文摘In this paper, we discuss the problem of guaranteed cost control for uncertain linear systems subject to actuator saturation. Based on the quadratic and non-quadratic Lyapunov functions, sufficient conditions for the robust stability and performance are derived. Moreover, all the conditions can be expressed as linear matrix inequalities (LMIs) or bilinear matrix inequalities (BMIs) in terms of the feedback gain. Thus, the static controller can be effectively synthesized via convex optimization. A numerical example illustrates the effectiveness of the method.
文摘Controllable saturation reactors are widely used in reactive power compensation. The control system of controllable saturation reactor determines adaption speed, accuracy, and stability. First, an innovative type of controllable saturation reactor is introduced. After that the control system is designed, and a self-tuning algorithm in PID controller is proposed in the paper. The algorithm tunes PID parameters automatically with different error signals caused by varied loads in power system. Then the feasibility of the above algorithm is verified by Simulink module of Matlab software. The results of simulation indicate that the control system can efficiently reduce adaption time and overshoot.
基金supported by the National Natural Science Foundation of China(42304056)the Natural Science Foundation of Hebei Province(D2023305007)+1 种基金supported by the Basic Research Project(GP2020-017,GP2020027)of the Korea Institute of Geoscience and Mineral Resources(KIGAM)funded by the Ministry of Science and ICT of Korea。
文摘Geothermal resources are a promising approach to clean renewable energy;90%of them are deep reservoirs of hot dry rock that require hydraulic fracturing to create a network of connections among wells to enable efficient heat exchange,known as an Enhanced Geothermal System(EGS).The Pohang EGS project in south Korea led to a devasting Mw5.5 earthquake,triggered by the reservoir's EGS stimulation,the largest earthquake known to have been induced by EGS development.Detailed investigations have been conducted to understand the cause of the Pohang earthquake;the conclusion has been that overpressurized injected fluids migrated into an unknown fault triggering this large earthquake.Detailed velocity images for the source zone of the 2017 Pohang earthquake,which could be helpful for further understanding its inducing mechanism,are unavailable.However,we have assembled detailed aftershock data recorded by 41 local stations installed within about three months after the Mw5.5 Pohang earthquake,and have then applied the V_(p)/V_(s)model's consistency-constrained double-difference seismic tomography method to determine the high-resolution three-dimensional Vp(compressional wave velocity),Vs(shear wave velocity),and V_(p)/V_(s)models of the source region that we report here,as well as earthquake locations within the source region.The velocity images reveal that the deep source area of the 2017 Pohang earthquake is dominated by low Vp,high Vs,and low V_(p)/V_(s)anomalies,a pattern that can be caused by overpressurized vapors due to high temperatures at these depths.Based on aftershock locations and velocity features,our studies support the conclusion that the 2017Pohang earthquake was triggered by injected EGS fluids that migrated into a blind fault.
基金supported by National Natural Science Foundation of China (62173215)Major Basic Research Program of the Natural Science Foundation of Shandong Province in China(ZR2021ZD04, ZR2020ZD24)the Support Plan for Outstanding Youth Innovation Team in Shandong Higher Education Institutions (2019KJI008)。
文摘This paper investigates the exponential stability and performance analysis of nonlinear time-delay impulsive systems subject to actuator saturation. When continuous dynamics is unstable, under some conditions, it is shown that the system can be stabilized by a class of saturated delayed-impulses regardless of the length of input delays. Conversely, when the system is originally stable, it is shown that under some conditions, the system is robust with respect to sufficient small delayed-impulses. Moreover, the design problem of the controller with the goal of obtaining a maximized estimate of the domain of attraction is formulated via a convex optimization problem. Three examples are provided to demonstrate the validity of the main results.
基金supported in part by the National Natural Science Foundation of China(62073189,62173207)the Taishan Scholar Project of Shandong Province(tsqn202211129)。
文摘This paper is aimed at the distributed fault estimation issue associated with the potential loss of actuator efficiency for a type of discrete-time nonlinear systems with sensor saturation.For the distributed estimation structure under consideration,an estimation center is not necessary,and the estimator derives its information from itself and neighboring nodes,which fuses the state vector and the measurement vector.In an effort to cut down data conflicts in communication networks,the stochastic communication protocol(SCP)is employed so that the output signals from sensors can be selected.Additionally,a recursive security estimator scheme is created since attackers randomly inject malicious signals into the selected data.On this basis,sufficient conditions for a fault estimator with less conservatism are presented which ensure an upper bound of the estimation error covariance and the mean-square exponential boundedness of the estimating error.Finally,a numerical example is used to show the reliability and effectiveness of the considered distributed estimation algorithm.
文摘Background,aim,and scope Soil saturated hydraulic conductivity(K_(s))is a key parameter in the hydrological cycle of soil;however,we have very limited understanding of K_(s) characteristics and the factors that inf luence this key parameter in the Mu Us sandy land(MUSL).Quantifying the impact of changes in land use in the Mu Us sandy land on K_(s) will provide a key foundation for understanding the regional water cycle,but will also provide a scientific basis for the governance of the MUSL.Materials and methods In this study,we determined K_(s) and the basic physical and chemical properties of soil(i.e.,organic matter,bulk density,and soil particle composition)within the first 100 cm layer of four different land use patterns(farmland,tree,shrub,and grassland)in the MUSL.The vertical variation of K_(s) and the factors that influence this key parameter were analyzed and a transfer function for estimating K_(s) was established based on a multiple stepwise regression model.Results The K_(s) of farmland,tree,and shrub increased gradually with soil depth while that of grassland remained unchanged.The K_(s) of the four patterns of land use were moderately variable;mean K_(s)values were ranked as follows:grassland(1.38 mm·min^(-1))<tree(1.76 mm·min^(-1))<farmland(1.82 mm·min^(-1))<shrub(3.30 mm·min^(-1)).The correlation between K_(s) and organic matter,bulk density,and soil particle composition,varied across different land use patterns.A multiple stepwise regression model showed that silt,coarse sand,bulk density,and organic matter,were key predictive factors for the K_(s) of farmland,tree,shrub,and grassland,in the MUSL.Discussion The vertical distribution trend for K_(s) in farmland is known to be predominantly influenced by cultivation,fertilization,and other factors.The general aim is to improve the water-holding capacity of shallow soil on farmland(0-30 cm in depth)to conserve water and nutrients;research has shown that the K_(s) of farmland increases with soil depth.The root growth of tree and shrub in sandy land exerts mechanical force on the soil due to biophysical processes involving rhizospheres,thus leading to a significant change in K_(s).We found that shallow high-density fine roots increased the volume of soil pores and eliminated large pores,thus resulting in a reduction in shallow K_(s).Therefore,the K_(s) of tree and shrub increased with soil depth.Analysis also showed that the K_(s) of grassland did not change significantly and exhibited the lowest mean value when compared to other land use patterns.This finding was predominantly due to the shallow root system of grasslands and because this land use pattern is not subject to human activities such as cultivation and fertilization;consequently,there was no significant change in K_(s) with depth;grassland also had the lowest mean K_(s).We also established a transfer function for K_(s) for different land use patterns in the MUSL.However,the predictive factors for K_(s) in different land use patterns are known to be affected by soil cultivation methods,vegetation restoration modes,the distribution of soil moisture,and other factors,thus resulting in key differences.Therefore,when using the transfer function to predict K_(s) in other areas,it will be necessary to perform parameter calibration and further verification.Conclusions In the MUSL,the K_(s) of farmland,tree,and shrub gradually increased with soil depth;however,the K_(s) of grassland showed no significant variation in terms of vertical distribution.The mean K_(s) values of different land use patterns were ranked as follows:shrub>farmland>tree>grassland;all land use patterns showed moderate levels of variability.The K_(s) for different land use patterns exhibited differing degrees of correlation with soil physical and chemical properties;of these,clay,silt,sand,bulk density,and organic matter,were identified as important variables for predicting K_(s) in farmland,tree,shrub,and grassland,respectively.Recommendations and perspectives In this study,we used a stepwise multiple regression model to establish a transfer function prediction model for K_(s) for different land use patterns;this model possessed high estimation accuracy.The ability to predict K_(s) in the MUSL is very important in terms of the conservation of water and nutrients.
基金Supported by Instituto de Ciencia,Tecnología e Innovación–Gobierno del Estado de Michoacán,No.ICTI-PICIR23-063,No.ICTIPICIR23-028Programa Proyectos de Investigación financiados 2024,Coordinación de Investigación Científica,Universidad Michoacana de San Nicolás de Hidalgo,México.
文摘High-saturated fat(HF)or high-fructose(HFr)consumption in children predispose them to metabolic syndrome(MetS).In rodent models of MetS,diets containing individually HF or HFr lead to a variable degree of MetS.Nevertheless,simultaneous intake of HF plus HFr have synergistic effects,worsening MetS outcomes.In children,the effects of HF or HFr intake usually have been addressed individually.Therefore,we have reviewed the outcomes of HF or HFr diets in children,and we compare them with the effects reported in rodents.In humans,HFr intake causes increased lipogenesis,hypertriglyceridemia,obesity and insulin resistance.On the other hand,HF diets promote low grade-inflammation,obesity,insulin resistance.Despite the deleterious effects of simultaneous HF plus HFr intake on MetS development in rodents,there is little information about the combined effects of HF plus HFr intake in children.The aim of this review is to warn about this issue,as individually addressing the effects produced by HF or HFr may underestimate the severity of the outcomes of Western diet intake in the pediatric population.We consider that this is an alarming issue that needs to be assessed,as the simultaneous intake of HF plus HFr is common on fast food menus.
基金Project(2015CB060200)supported by the National Basic Research Program of ChinaProjects(51322403,51274254)supported by the National Natural Science Foundation of ChinaProjects(2015cx005,2016cx017)supported by Innovation Plan of Central South University
文摘The strength of rock materials is largely affected by water and loading conditions, but there are few studies on mechanical properties of saturated rocks at high strain rates. Through compressive tests on dry and saturated sandstone specimens, it was found that the dynamic compressive strength of both dry and saturated sandstone specimens increased with the increase of strain rates. The saturated rock specimens showed stronger rate dependence than the dry ones. The water affecting factor (WAF), as the ratio of the strength under dry state to that under saturated state, was introduced to describe the influence of water on the compressive strength at different strain rates. The WAF under static load was close to 1.38, and decreased with the increase of strain rate. When the strain rate reached 190 s^-1, the WAF reduced to 0.98. It indicates that the compressive strength of saturated specimens can be higher than that of dry ones when the strain rate is high enough. Furthermore, the dual effects of water and strain rate on the strength of rock were discussed based on sliding crack model, which provided a good explanation for the experimental results.
基金Project (50774095) supported by the National Natural Science Foundation of ChinaProject (200449) supported by China National Outstanding Doctoral Dissertations Special Funds
文摘By the methods of uniaxial single-stage loading and graded incremental cyclic loading, the creep experiments were performed on the deep saturated rock from Dongguashan Mine, and the creep curves of saturated rock under different loading stresses were obtained. By comparing with the creep rule of dry rock in the same location, the creep rule of deep saturated rock was analyzed. Based on the united rheological mechanical model, the rheological model of deep saturated rock was recognized, and the parameters of the model were determined. The results show that the creep curves are very smooth under low stress, but the phenomena of wave and catastrophe turn up under high stress, and the bearing capacity of rock is weakening over time. The rheological properties of saturated and dry rocks are very different under tlie condition of deep high stress, especially when unloading, degradation and damage of rock quality is more serious, and the effect of water cannot be neglected. The H--HIN--NJS model (Schofield-Scott-Blair model) was selected to represent the rheology rule of deep saturated rock, and the fitting curves of model agree well with the experiment data, so the selected model is reasonable.
基金supported by the National Natural Science Foundation of China (No. 11002025, 40114066)the National Basic Research Program of China (973 Program) (No.2007CB209505)the RIPED Youth Innovation Foundation (No. 2010-A-26-01)
文摘Taking into account three important porous media mechanisms during wave propagation (the Biot-flow, squirt-flow, and solid-skeleton viscoelastic mechanisms), we introduce water saturation into the dynamic governing equations of wave propagation by analyzing the effective medium theory and then providing a viscoelastic Biot/squirt (BISQ) model which can analyze the wave propagation problems in a partially viscous pore fluid saturated porous media. In this model, the effects of pore fluid distribution patterns on the effective bulk modulus at different frequencies are considered. Then we derive the wave dynamic equations in the time-space domain. The phase velocity and the attenuation coefficient equations of the viscoelatic BISQ model in the frequency-wavenumber domain are deduced through a set of plane harmonic solution assumptions. Finally, by means of numerical simulations, we investigate the effects of water saturation, permeability, and frequency on compressional wave velocity and attenuation. Based on tight sandstone and carbonate experimental observed data, the compressional wave velocities of partially saturated reservoir rocks are calculated. The compressional wave velocity in carbonate reservoirs is more sensitive to gas saturation than in sandstone reservoirs.
基金Forest Ecosystem Research of Liangshui & Maorshan Station of Heilongjiang Province (CFERN, No. 2001-02).
文摘Nitrogen is one of the most important elements that can limit plant growth in forest ecosystems. Studies of nitrogen mineralization, nitrogen saturation and nitrogen cycle in forest ecosystems is very necessary for understanding the productivity of stand, nutrient cycle and turnover of nitrogen of forest ecosystems. Based on comparison and analysis of domestic and in-ternational academic references related to studies on nitrogen mineralization, nitrogen saturation and nitrogen cycle in recent 10 years, the current situation and development of the study on these aspects, and the problems existed in current researches were reviewed. At last, some advices were given for future researches.
文摘Two geothermal fields with calcite scaling in some wells in Iceland were selected for the study of calcite scaling potential. An allowable supersaturation was found by comparing the degree of calcite supersaturation and actual scaling status in the selected wells.The saturation index,0.37~ 0.48, was the boundary between calcite scaling and no scaling. The information about changes in chloride concentration shows that mixing different waters is the main cause to form calcite scaling in the geothermal wells selected in this study.In this case, the content of chloride can be used as an index of scaling.
文摘AIM: To investigate how the saturated and unsaturated fatty acid composition influences the susceptibility of developing acute pancreatitis. METHODS: Primary pancreatic acinar cells were treated with low and high concentrations of different saturated and unsaturated fatty acids, and changes in the cytosolic Ca2+ signal and the expression of protein kinase C(PKC) were measured after treatment. RESULTS: Unsaturated fatty acids at high concentrations, including oleic acid, linoleic acid, palmitoleic acid, docosahexaenoic acid, and arachidonic acid, induced a persistent rise in cytosolic Ca2+ concentrations in acinar cells. Unsaturated fatty acids at low concentrations and saturated fatty acids, including palmitic acid, stearic acid, and triglycerides, at low and high concentrations were unable to induce a rise in Ca2+ concentrations in acinar cells. Unsaturated fatty acids at high concentrations but not saturated fatty acids induced intra-acinar cell trypsin activation and cell damage and increased PKC expression.CONCLUSION: At sufficiently high concentrations, unsaturated fatty acids were able to induce acinar cells injury and promote the development of pancreatitis. Unsaturated fatty acids may play a distinctive role in the pathogenesis of pancreatitis through the activation of PKC family members.
基金supported by the National Natural Science Foundation of China(NSFC-41272066)the Program for Changjiang Scholars & Innovative Research Team of the University of China(IRT-13075)
文摘Three identical model boxes were made from transparent plexiglass and angle iron. Using the method of sinking water and according to the sedimentary rhythm of saturated calcium carbonate (lime-mud) intercalated with cohesive soil, calcites with particle sizes diameters of ≤ 5 μm, 10–15 μm and 23–30 μm as well as cohesive soil were sunk alternatively in water of three boxes to build three test models, each of which has a specific size of calcite. Pore water pressure gauges were buried in lime-mud layers at different depths in each model, and connected with a computer system to collect pore water pressures. By means of soil tests, physical property parameters and plasticity indices (Ip) were obtained for various grain-sized saturated lime-muds. The lime-muds with Ip ranging from 6.3 to 8.5 (lower than 10) are similar to liquid saturated silt in the physical nature, indicating that saturated silt can be liquefied once induced by a strong earthquake. One model cart was pushed quickly along the length direction of the model so that its rigid wheels collided violently with the stone stair, thus generating an artificial earthquake with seismic wave magnitude greater than VI degree. When unidirectional cyclic seismic load of horizontal compression-tension-shear was imposed on the soil layers in the model, enough great pore water pressure has been accumulated within pores of lime-mud, resulting in liquefaction of lime-mud layers. Meanwhile, micro-fractures formed in each soil layer provided channels for liquefaction dewatering, resulting in formation of macroscopic liquefaction deformation, such as liquefied lime-mud volcanoes, liquefied diapir structures, vein-like liquefied structures and liquefied curls, etc. Splendid liquefied lime-mud eruption lasted for two to three hours, which is similar to the sand volcano eruption induced by strong earthquake. However, under the same artificial seismic conditions, development of macroscopic liquefied structures in three experimental models varied in shape, depth and quantity, indicating that excess pore water pressure ratios at initial liquefaction stage and complete liquefaction varied with depth. With size increasing of calcite particle in lime-mud, liquefied depth and deformation extent increase accordingly. The simulation test verifies for the first time that strong earthquakes may cause violent liquefaction of saturated lime-mud composed of micron-size calcite particles, uncovering the puzzled issue whether seafloor lime-mud can be liquefied under strong earthquake. This study not only provides the latest simulation data for explaining the earthquake-induced liquefied deformations of saturated lime-mud and seismic sedimentary events, but also is of great significance for analysis of foundation stability in marine engineering built on the soft calcium carbonate layers in neritic environment.