This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide...This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.展开更多
The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the...The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.展开更多
Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building...Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building.A novel approach is put forward based on adaptive differential evolution to map building for the multi-robot system.The multi-robot mapping-building system adopts the methods of decentralized exploration and concentrated mapping.The adaptive differential evolution algorithm is used to search in the space of possible transformation,and the iterative search is performed with the goal of maximizing overlapping regions.The map is translated and rotated so that the two maps can be overlapped and merged into a single global one successfully.This approach for map building can be realized without any knowledge of their relative positions.Experimental results show that the approach is effective and feasibile.展开更多
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;"&g...Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>展开更多
Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So ...Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.展开更多
现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗...现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。展开更多
基金supported by the National Natural Science Foundation of China(61973105,62373137)。
文摘This article mainly investigates the fuzzy optimization robust control issue for nonlinear networked systems characterized by the interval type-2(IT2)fuzzy technique under a differential evolution algorithm.To provide a more reasonable utilization of the constrained communication channel,a novel adaptive memory event-triggered(AMET)mechanism is developed,where two event-triggered thresholds can be dynamically adjusted in the light of the current system information and the transmitted historical data.Sufficient conditions with less conservative design of the fuzzy imperfect premise matching(IPM)controller are presented by introducing the Wirtinger-based integral inequality,the information of membership functions(MFs)and slack matrices.Subsequently,under the IPM policy,a new MFs intelligent optimization technique that takes advantage of the differential evolution algorithm is first provided for IT2 TakagiSugeno(T-S)fuzzy systems to update the fuzzy controller MFs in real-time and achieve a better system control effect.Finally,simulation results demonstrate that the proposed control scheme can obtain better system performance in the case of using fewer communication resources.
文摘The differential evolution algorithm is an evolutionary algorithm for global optimization and the un-capacitated facility location problem (UFL) is one of the classic NP-Hard problems. In this paper, combined with the specific characteristics of the UFL problem, we introduce the activation function to the algorithm for solving UFL problem and name it improved adaptive differential evolution algorithm (IADEA). Next, to improve the efficiency of the algorithm and to alleviate the problem of being stuck in a local optimum, an adaptive operator was added. To test the improvement of our algorithm, we compare the IADEA with the basic differential evolution algorithm by solving typical instances of UFL problem respectively. Moreover, to compare with other heuristic algorithm, we use the hybrid ant colony algorithm to solve the same instances. The computational results show that IADEA improves the performance of the basic DE and it outperforms the hybrid ant colony algorithm.
基金Supported by the National Natural Science Foundation of China(No.90820302,60805027)the Provincial Natural Science Foundation of Hunan(No.12JJ3064)+1 种基金the Construct Program of the Key Discipline in Hunan Province(No.201176)the Planned Science and Technology Project of Hunan Province(No.2011SK3135,2012FJ3059)
文摘Map building by multi-robot is very important to accomplish autonomous navigation,and one of the basic problems and research hotspots is how to merge the maps into a single one in the field of multi-robot map building.A novel approach is put forward based on adaptive differential evolution to map building for the multi-robot system.The multi-robot mapping-building system adopts the methods of decentralized exploration and concentrated mapping.The adaptive differential evolution algorithm is used to search in the space of possible transformation,and the iterative search is performed with the goal of maximizing overlapping regions.The map is translated and rotated so that the two maps can be overlapped and merged into a single global one successfully.This approach for map building can be realized without any knowledge of their relative positions.Experimental results show that the approach is effective and feasibile.
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
文摘Differential evolution algorithm based on the covariance matrix learning can adjust the coordinate system according to the characteristics of the population, which make<span style="font-family:Verdana;">s</span><span style="font-family:Verdana;"> the search move in a more favorable direction. In order to obtain more accurate information about the function shape, this paper propose</span><span style="font-family:Verdana;">s</span><span style="font-family:;" "=""> <span style="font-family:Verdana;">covariance</span><span style="font-family:Verdana;"> matrix learning differential evolution algorithm based on correlation (denoted as RCLDE)</span></span><span style="font-family:;" "=""> </span><span style="font-family:Verdana;">to improve the search efficiency of the algorithm. First, a hybrid mutation strategy is designed to balance the diversity and convergence of the population;secondly, the covariance learning matrix is constructed by selecting the individual with the less correlation;then, a comprehensive learning mechanism is comprehensively designed by two covariance matrix learning mechanisms based on the principle of probability. Finally,</span><span style="font-family:;" "=""> </span><span style="font-family:;" "=""><span style="font-family:Verdana;">the algorithm is tested on the CEC2005, and the experimental results are compared with other effective differential evolution algorithms. The experimental results show that the algorithm proposed in this paper is </span><span style="font-family:Verdana;">an effective algorithm</span><span style="font-family:Verdana;">.</span></span>
文摘Brushless DC(BLDC)motor is a complex nonlinear system,of which some parameters will also change during operation.Therefore,obtaining accurate rotor position directly through the line voltage becomes more difficult.So a new method is proposed in this paper which uses three line voltages as the input signal to identify the motor position based on adaptive wavelet neural network(WNN)and the differential evolution(DE)algorithm to optimize WNN structures,thus realizing the improvement of accuracy,exactness of the communication signals and convergence speed of the rotor position identification.Finally,both simulations and experimental results show that the proposed method has high accuracy of recognizing rotor position and strong orientation ability.
文摘采用自主水下航行器(Autonomous Underwater Vehicle,AUV)磁测平台可开展海洋地磁场测量、水下磁性目标探测和识别等工作,AUV磁测平台具有广阔的应用前景,但目前AUV载体磁干扰补偿技术研究尚不成熟,制约着水下航行器测磁精度。基于磁测平台抗磁干扰基本原理,提出一种基于线性种群规模缩减和成功历史的参数自适应差分进化(Success History-based Adaptive Differential Evolution with Linear Population Size Reduction,L-SHADE)算法的AUV载体磁干扰参数辨识的数值模拟方法。用磁偶极子和旋转椭球壳混合模型来等效模拟AUV载体磁干扰,通过模拟航行获得多组磁测数据,据此建立磁干扰参数辨识模型,并采用L-SHADE算法求解。通过数值模拟实验定量分析研究磁测平台测磁精度随磁传感器、平台姿态及航向等误差的传播规律。研究结果表明:当磁传感器测量精度为10 nT、姿态测量精度为0.01°、航向测量精度为0.1°时,测磁误差可小于100 nT。设计的AUV磁测平台抗干扰试验表明,地磁场总量最大相对误差为1.07%。
文摘现代战争中,跨平台武器单元的协同利用,是合同编队体系的重要内容,作战方式也正由平台级协同向着能力要素级协同转变,这对武器目标分配问题的解决提出了更大挑战。本文将武器单元的最小划分单位细化到能力要素级,以毁伤概率与成本消耗为优化目标,面向多种来袭目标的编队防空场景,提出了跨平台武器目标分配算法。同时,基于混沌映射提出了混沌种群重构(chaotic population reconstruction,CPR)机制,并结合带存档的自适应差分进化(adaptive differential evolution with optional external archive,JADE)算法提出了CPR-JADE算法,利用CPR机制可以帮助算法在解决高维复杂约束问题时跳出局部最优。再将其运用到武器目标分配模型上,实现了对模型的高效求解。最后,通过在多种数据规模下与其他进化优化算法的仿真对比试验分析,验证了所提方法的正确性与有效性。